Diseños óptimos para modelos no lineales con estructura de correlación: estudio de robustez
Optimum designs for nonlinear models with correlation structure: robustness study
Contenido principal del artículo
Resumen
En este artículo se propone una metodología para comparar diseños D-óptimos exactos cuando no se cumple el supuesto de incorrelación del término de error en el modelo y se tienen bajo consideración cuatro estructuras de covarianza para modelarlo. Se halla una expresión simplificada de la matriz de información de Fisher para el caso general de observaciones correlacionadas y se utiliza en las cuatro estructuras de covarianza consideradas. Con cada estructura de covarianza se halla el respectivo diseño óptimo, conocido como diseño nominal, y se evalúa la robustez de los otros diseños óptimos hallando la eficiencia de éstos con relación al diseño nominal. Se concluye que los cuatro diseños óptimos son competitivos con respecto a las otras estructuras de covarianza consideradas, al observar una mínima pérdida de eficiencia de cada uno de estos diseños y mostrando que los diseños óptimos, al menos con las estructuras de covarianza consideradas, son robustos a la elección de la estructura de covarianza. Adicionalmente, se muestra, vía simulación, que, con los diseños óptimos, bajo cada estructura de covarianza se obtienen buenos estimadores para los parámetros del modelo al evaluar la magnitud del coeficiente de variación y el error cuadrático medio relativo.
Descargas
Detalles del artículo
Referencias (VER)
Akaike, H. (1974). A new look at the statistical model identification, IEEE Transactions on Automatic Control, 19(6), 716-723, doi: 10.1109/TAC.1974.1100705.
Amo, M., López-Fidalgo y López-Ríos, V. (2012). Optimal designs for two nested pharmacokinetic models with correlated observations, Communications in Statistics, 41(1), 944-963, doi: 10.1080/03610918.2012.625743.
Atkinson, A., Donev, A. y Tobias, R. (2007). Optimum Experimental Designs with SAS, Oxford University Press, New York.
Baran, S., Szák-Kocsis, C. y Stehlík, M. (2018). D-optimal designs for complex Ornstein–Uhlenbeck processes. Journal of Statistical Planning and Inference, 197, 93-106, doi: 10.1016/j.jspi.2017.12.006.
Bates, D. y Watts, D. (1988). Nonlinear Regression Analysis and Its Applications, John Wiley & Sons, New York.
Boukouvalas, A., Cornford, D. y Stehlík, M. (2014). Optimal design for correlated processes with input-dependent noise. Computational Statistics & Data Analysis, 71, 1088-1102, doi: 10.1016/j.csda.2013.09.024.
Correa-Álvarez, C. D. (2015). Búsqueda de diseños cuasi-óptimos eficientes a partir de un diseño D-óptimo para observaciones correlacionadas espacialmente, tesis (Maestría en Estadística). Universidad Nacional de Colombia Sede Medellín.
Dette, H., Kunert, J. y Pepelyshev, A. (2008). Exact optimal designs for weights least squares analysis with correlated errors, Statistica Sinica, 18, 135-154, from http://www.jstor.org/stable/24308249
Dette, H., Pepelyshev, A. y Zhigljavsky, A. (2013). Optimal design for linear models with correlated observations, The Annals of Statistics, 41(1), 143-176, doi: 10.1214/12-AOS1079.
Dette, H., Pepelyshev, A. y Zhigljavsky, A. (2015). Design for linear regression models with correlated errors. In: Dean, A., Morris, M., Stufken, J., Bingham, D. (Eds.), Handbook of Design and Analysis of Experiments. Chapman & Hall/CRC, Boca Raton, pp. 237–278.
Dette, H., Pepelyshev, A. y Zhigljavsky, A., (2016). Optimal designs in regression with correlated errors. Ann. Statist. 44, 113–152, doi: 10.1214/15-AOS1361.
Fedorov, V. y Hackl, P. (1997). Model-Oriented Design of Experiments, Springer, New York.
Kiefer, J. (1959). Optimum Experimental Designs, Journal of the Royal Statistical Society, 21(1), 272-319, doi: 10.1111/j.2517-6161.1959.tb00338.x.
Liu, X., Yue, R. X. y Wong, W. K. (2018). D-optimal design for the heteroscedastic Berman model on an arc. Journal of Multivariate Analysis, 168, 131-141, doi: 10.1016/j.jmva.2018.07.003.
López-Ríos, V. y Ramos-Quiroga, R. (2007). Introducción a los Diseños óptimos, Revista Colombiana de Estadística, 30(1), 37-51, https://www.redalyc.org/pdf/899/89930103.pdf.
Matérn, B. (1960). Spatial Variation, Springer, New York.
Müller, W. G., Pronzato, L., Rendas, J. y Waldl, H. (2015). Efficient prediction designs for random fields. Appl. Stochastic Models Bus. Ind., 31, 178-194. doi: 10.1002/asmb.2084.
Pazman, A. (1986). Foundations of Optimum Experimental Design, D. Reidel Publishing Company, Dordrecht.
Pazman, A. (2007). Criteria of optimal designs for small-samples experiments with correlated observations, Kybernetica, 43(4), 453-462, https://dml.cz/handle/10338.dmlcz/135787.
R Core Team (2020). R: A language and environment for statistical, computing. R Foundation for Statistical Computing, Vienna, Austria, URL https://www.R-project.org/.
Rodríguez-Díaz, J. M., Santos-Martín, M. T., Waldl, H. y Stehlik, M. (2012). Filling and D-optimal designs for the correlated Generalized Exponential models. Chemometrics and Intelligent Laboratory Systems, 114, 10-18, doi: 10.1016/j.chemolab.2012.01.007.
Schwarz, G. (1978). Estimating the dimension of a model, Annals of Statistics, 6(2), 461-464, doi: 10.1214/aos/1176344136.