Clasificador bayesiano de dos clases para seleccionar la mejor regla de prioridad en un problema Job Shop: Open Shop
Clasificador bayesiano de dos clases para seleccionar la mejor regla de prioridad en un problema Job Shop: Open Shop
Barra lateral del artículo
Términos de la licencia (VER)
Declaración del copyright
Los autores ceden en exclusiva a la Universidad EIA, con facultad de cesión a terceros, todos los derechos de explotación que deriven de los trabajos que sean aceptados para su publicación en la Revista EIA, así como en cualquier producto derivados de la misma y, en particular, los de reproducción, distribución, comunicación pública (incluida la puesta a disposición interactiva) y transformación (incluidas la adaptación, la modificación y, en su caso, la traducción), para todas las modalidades de explotación (a título enunciativo y no limitativo: en formato papel, electrónico, on-line, soporte informático o audiovisual, así como en cualquier otro formato, incluso con finalidad promocional o publicitaria y/o para la realización de productos derivados), para un ámbito territorial mundial y para toda la duración legal de los derechos prevista en el vigente texto difundido de la Ley de Propiedad Intelectual. Esta cesión la realizarán los autores sin derecho a ningún tipo de remuneración o indemnización.
La autorización conferida a la Revista EIA estará vigente a partir de la fecha en que se incluye en el volumen y número respectivo en el Sistema Open Journal Systems de la Revista EIA, así como en las diferentes bases e índices de datos en que se encuentra indexada la publicación.
Todos los contenidos de la Revista EIA, están publicados bajo la Licencia Creative Commons Atribución-NoComercial-NoDerivativa 4.0 Internacional
Licencia
Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-NoDerivativa 4.0 Internacional
Contenido principal del artículo
Resumen
Descargas
Detalles del artículo
Omar Danilo Castrillón Gomez, Universidad Nacional de Colombia.
Profesor titular, de la Universidad Nacional de Colombia. Con mas de 20 años de experiencia docente en el area de informatica, logistica, optimización. Ingeniero de Sistema. Especialista en Educacion personalizada, Gerencia y control de calidad, y en BioIngenieria, doctor en Bio Ingenieria de la Universidad Politecnica de Valencia - España.William Ariel Sarache, Universidad Nacional de Colombia
Dr. Ingenieria
Santiago Ruiz Herrera, Universidad Nacional de Colombia
Dr. Ingenieria
Referencias (VER)
Baltazar, a., aranda, J. I. & Aguilar, G. G. (2008). Bayesian classification of ripening stages of tomato fruit using acoustic impact and colorimeter sensor data. computers and electronics in agriculture, No. 60, pp. 113-121.
Dallaire, P., Giguère, P., Émond, D. & Chaib-draa, B. (2014). Autonomous tactile perception: A combined improved sensing and Bayesian nonparametric approach. Robotics and Autonomous Systems, No. 62, pp. 422-435.
Del Sagrado, J., Sanchez, J. A., Rodriguez, F. & Berenguel, M. (2016). Bayesian networks for greenhouse temperature control. Journal of Applied Logic, http://dx.doi.org/10.1016/j.jal.2015.09.006, Article in press.
Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Patter Classification. New York, Estados Unidos: John Wiley & Sons, Pagina 41.
Fernandez, E. (2016). Analisis de clasificadores Bayesianos. Argentina: Laboratorio de sistemas Inteligentes, Consultado 18 de febrero de 2006, disponible en http://materias.fi.uba.ar/7550/clasificadores-bayesianos.pdf
Hanen , B., Concha , B., Toro, C. & Larragaña, P. (2013). Predicting human immunodeficiency virus inhibitors using multi-dimensional Bayesian network classifiers. Artificial Intelligence in Medicine, No. 57, pp. 219-229.
He, L., Liu, B., Hu, D., Wen, Y., Wan, M. & Long, J. (2015). Motor Imagery EEG Signals Analysis Based on Bayesian Network with Gaussian Distribution. Neurocomputing, http://dx.doi.org/10.1016/j.neucom.2015.05.133 (Article in press).
Karabatak, M. (2015). A new classifier for breast cancer detection based on Naïve Bayesian. Measurement, No. 72, pp. 32-36.
Mujalli, R. O., Lopez, G. & Garach L. (2016). Bayes classifiers for imbalanced traffic accidents data sets. Accident Analysis and Prevention, No. 88, pp. 37-51.
Mukherjee, S. & Sharmaa, N. (2012). Intrusion Detection using Naive Bayes Classifier with Feature Reduction. Procedia Technology, No. 4, pp. 119-128.
Roy, S., Shivakumara, P., Roy, P. P., Pal, U., Tan, C. L. & Lu, T. (2015). Bayesian classifier for multi-oriented video text recognition system. Expert Systems with Applications, No. 42, pp. 5554-5556.
Salama, K. M. & Freitas. (2014). A. A. Classification with cluster-based Bayesian multi-nets using Ant Colony Optimization. Swarm and Evolutionary Computation, No. 18, pp. 54-70.
Sun, L., Lin, L., Wang, Y., Gen, M. & Kawakami, H. (2015). A Bayesian Optimization-based Evolutionary Algorithm for Flexible Job Shop Scheduling. Procedia Computer Science, No. 61, pp. 521-526.
Wiggins, M., Saad, A. & Litt, B. (2008). Vachtsevanos, G. Evolving a Bayesian classifier for ECG-based age classification in medical applications. Applied Soft Computing, No. 8, pp. 599-608.
Xiang, C., Yong, P. C. & Meng, L. S. (2008). Design of multiple-level hybrid classifier for intrusion detection system using Bayesian clustering and decision trees. Pattern Recognition Letters, No. 29, pp. 918-924.
Yin, W., Kissinger, J. C., Moreno, A., Galinski, M. R. & Styczynski. (2015). M. P. From genome-scale data to models of infectious disease: A Bayesian network-based strategy to drive model development. Mathematical Biosciences, No. 260, pp. 156-168.
Zaidan, A., Ahmad, N., Karim, H. A., Larbani, M., Zaidan & B. Sali. (2014). A. On themulti-agent learning neural and Bayesian methods in skin detector and pornography classifier: An automated anti-pornography system. Neurocomputing, No. 131, pp. 397-418.