Impact of clay minerals on reservoir sandstone properties: comparative study in Colombian eastern cordillera and middle Magdalena valley basins
Impacto de minerales arcillosos en propiedades petrofísicas de los reservorios de areniscas: estudio comparativo en las cuencas de la cordillera oriental y el valle medio del Magdalena (Colombia)
Contenido principal del artículo
Resumen
The aim of this study is to examine how mineralogy influences the petrophysical properties, particularly porosity and permeability, of potential sandstone reservoirs in Colombia. It seeks to comprehensively understand how the presence of clay minerals impacts the overall quality of hydrocarbon reservoirs in the country. Samples of sandstones from reservoirs at various outcrops in the Eastern Cordillera and Middle Magdalena Valley basins were collected. Detailed analysis of mineralogy and petrographic characteristics of the samples was conducted through various analytical techniques such as transmitted light microscopy, X-ray diffraction, and scanning electron microscopy. Porosity and permeability were measured using automated permeametry and porosimetry equipment. The predominant composition of the analyzed reservoir rocks comprises quartz (45-50%), feldspar (35-40%), and clays (10-20%). These rocks were categorized into two distinct groups based on their permeability (K) and porosity (Φ), ranging from 0.009 to 29.220 mD and 1.88 to 20.75%, respectively. The presence of illite correlated with a reduction in both porosity and permeability, highlighting its negative impact on reservoir quality. Conversely, an elevated concentration of kaolinite was associated with favorable porosity and permeability. Samples with feldspar sericitization demonstrated inferior hydrocarbon storage quality. This study provides a deeper understanding of how mineralogy affects the petrophysical properties of sandstone reservoirs in Colombia. These findings are crucial for guiding exploration and production strategies in the Colombian oil industry, especially in challenging geological environments like those studied.
Descargas
Detalles del artículo
Referencias (VER)
Aguilera, R., Sotelo, V., Burgos, C., Arce, C., Gómez, C., Mojica, J., Castillo, H., Jiménez, D. & Osorno, J. (2010). Organic Geochemistry Atlas of Colombia. Earth Sciences Research Journal, Special Edition, 14, 1-174.
Al-Kharra'a, H.S., Wolf, K.H.A.A., AlQuraishi, A.A., Mahmoud, M.A., Deshenenkov, I., AlDuhailan, M.A., Alarifi, S.A., AlQahtani, N.B., Kwak, H.T. & Zitha, P.L.J. (2023). Impact of clay mineralogy on the petrophysical properties of tight sandstones. Geoenergy Science and Engineering, 227, Article 211883. https://doi.org/10.1016/j.geoen.2023.211883
Anovitz, L.M. & Cole, D.R. (2015). Characterization and analysis of porosity and pore structures. Reviews in Mineralogy and Geochemistry, 80(1), 61–164. https://doi.org/10.2138/rmg.2015.80.04
Bera, B., Mitra, S.K. & Vick, D. (2011). Understanding the microstructure of Berea Sandstone by the simultaneous use of micro-computed tomography (micro-CT) and focused ion beam-scanning electron microscopy (FIB-SEM). Micron, 42(5), 412-418. https://doi.org/10.1016/j.micron.2010.12.002
Burley, S.D. & Worden, R.H. (2003). Sandstone Diagenesis: The Evolution of Sand to Stone. In: Sandstone Diagenesis, Recent and Ancient (Burley, S.D., Worden, R.H., Eds.), Blackwell Publishing: Malden, MA, USA, pp. 1–44.
Caballero, V.M., Parra, M. & Mora, A.R. (2010). Levantamiento de la Cordillera Oriental de Colombia durante el Eoceno Tardío - Oligoceno Temprano: Proveniencia sedimentaria en el Sinclinal de Nuevo Mundo, Cuenca Valle Medio del Magdalena. Boletín de Geología, 32(1), 45-77.
Campos, R., Barrios, I. & Lillo, J. (2015). Experimental CO2 injection: Study of physical changes in sandstone porous media using Hg porosimetry and 3D pore network models. Energy Reports, 1, 71-79. https://doi.org/10.1016/j.egyr.2015.01.004
Combes, R., Robin, M., Blavier, G., Aı̈dan, A. & Degrève, F. (1998). Visualization of imbibition in porous media by environmental scanning electron microscopy: application to reservoir rocks. Journal of Petroleum Science and Engineering, 20(3–4), 133-139. https://doi.org/10.1016/S0920-4105(98)00012-6
Cooper, M.A., Addison, F.T., Alvarez, R., Coral, M., Graham, R.H., Hayward, A.B., Howe, S., Martinez, J., Naar, J., Penas, R., Pulham, A.J. & Taborda, A. (1995). Basin Development and Tectonic History of the Llanos Basin, Eastern Cordillera, and Middle Magdalena Valley, Colombia. American Association of Petroleum Geologists Bulletin, 79(10), 1421–1442. https://doi.org/10.1306/7834D9F4-1721-11D7-8645000102C1865D
Desbois, G., Urai, J.L., Kukla, P.A., Konstanty, J. & Baerle, C. (2011). High-resolution 3D fabric and porosity model in a tight gas sandstone reservoir: A new approach to investigate microstructures from mm- to nm-scale combining argon beam cross-sectioning and SEM imaging. Journal of Petroleum Science and Engineering, 78(2), 243-257. https://doi.org/10.1016/j.petrol.2011.06.004
Desbois, G., Urai, J.L., Hemes, S., Schröppel, B., Schwarz, J.-O., Mac, M. & Weiel, D. (2016). Multi-scale analysis of porosity in diagenetically altered reservoir sandstone from the Permian Rotliegend (Germany). Journal of Petroleum Science and Engineering, 140, 128-148. https://doi.org/10.1016/j.petrol.2016.01.019
Fan, A., Yang, R., Lenhardt, N., Wang, M., Han, Z., Li, J., Li, Y. & Zhao, Z. (2019). Cementation and porosity evolution of tight sandstone reservoirs in the Permian Sulige gas field, Ordos Basin (central China). Marine and Petroleum Geology, 103, 276-293. https://doi.org/10.1016/j.marpetgeo.2019.02.010
French, M.W., Worden, R.H., Mariani, E., Larese, R.E., Mueller, R.R. & Kliewer, C.E. (2012). Microcrystalline quartz generation and the preservation of porosity in sandstones; evidence from the Upper Cretaceous of the Subhercynian Basin, Germany. Journal of Sedimentary Research, 82(6), 422–434. https://doi.org/10.2110/jsr.2012.39
García, M., Mier, R., Cruz, L.E. & Vásquez, M. (2009). Evaluación del potencial hidrocarburífero de las cuencas colombianas. Contrato Interadministrativo Nº 2081941 DE 2008 FONADE-UIS-ANH. http://oilproduction.net/files/cuencas%20petroleras%20de%20colombia-2009.pdf
Ghanizadeh, A., Clarkson, C., Aquino, S., Ardakani, O. & Sanei, H. (2015). Petrophysical and geomechanical characteristics of Canadian tight oil and liquid-rich gas reservoirs: I. Pore network and permeability characterization. Fuel, 153, 664–681. https://doi.org/10.1016/j.fuel.2015.03.020
Houseknecht, D.W. & Pittman, E.D. (1992). Origin, diagenesis & Petrophysics of Clay Minerals in Sandstones. Special Publication 47. Society of Sedimentary Geologists, Tulsa.
Jianfeng, T., Yongli, G. & Pengbo, Z. (2013). Genesis of illite in Chang 7 tight oil reservoir in Heshui area, Ordos Basin. Oil and Gas Geology, 34(5), 700-707.
Islam, M.A. (2009). Diagenesis and reservoir quality of Bhuban sandstones (Neogene), Titas Gas Field, Bengal Basin, Bangladesh. Journal of Asian Earth Sciences, 35(1), 89–100. https://doi.org/10.1016/j.jseaes.2009.01.006
Kantorowicz, J.D. (1990). The Influence of variations in illite morphology on the permeability of Middle Jurassic Brent Group sandstones, Cormorant Field, UK North Sea. Marine and Petroleum Geology, 7(1), 66-74. https://doi.org/10.1016/0264-8172(90)90057-N
Kareem, R., Cubillas, P., Gluyas, J., Bowen, L. & Greenwell, H.Ch. (2017). Multi-technique approach to the petrophysical characterization of Berea sandstone core plugs (Cleveland Quarries, USA). Journal of Petroleum Science and Engineering, 149, 436-455. https://doi.org/10.1016/j.petrol.2016.09.029
Kassab, M.A., Abu Hashish, M.F., Nabawy, B.S. & Elnaggar, O.M. (2017). Effect of kaolinite as a key factor controlling the petrophysical properties of the Nubia sandstone in central Eastern Desert, Egypt. Journal of African Earth Sciences, 125, 103-117. https://doi.org/10.1016/j.jafrearsci.2016.11.003
Kweon, H. & Deo, M. (2017). The impact of reactive surface area on brine-rock-carbon dioxide reactions in CO2 sequestration. Fuel, 188, 39-49. https://doi.org/10.1016/j.fuel.2016.10.010
Lai, J., Wang, G., Ran, Y. & Zhou, Z. (2015). Predictive distribution of high-quality reservoirs of tight gas sandstones by linking diagenesis to depositional facies: Evidence from Xu-2 sandstones in the Penglai area of the central Sichuan basin, China. Journal of Natural Gas Science and Engineering, 27, 810-822. https://doi.org/10.1016/j.jngse.2015.09.043
Loucks, R.G., Reed, R.M., Ruppel, S.C. & Hammes, U. (2012). Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bulletin, 96(6), 1071-1098. https://doi.org/10.1306/08171111061
Luffel, D.L., Hopkins, C.W. & Schettler, P.D. (1993). Matrix permeability measurements of gas productive shales. Proceedings of the 68th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, SPE 26633, Houston, USA.
Makhanov, K., Deutsch, C., Wong, R., Chan, J. & Payne, S. (2014). Modeling long-range channel deposits with a pattern-based approach. Journal of Petroleum Science and Engineering, 122, 678–693. https://doi.org/10.1016/j.petrol.2014.06.003
McKenny, B.J.L., Hamilton, P.J., Faiz, M. & Sayers, J. (2009). Mineralogical and petrophysical characterisation of coal seam gas reservoirs from the Bowen and Sydney basins, Australia. International Journal of Coal Geology, 79(3), 201-214. https://doi.org/10.1016/j.coal.2009.07.001
Nabawy, B.S. & Hossin, M. (2017). Statistical evaluation of the petrophysical controls on the effective porosity and permeability in heterogeneous sandstone reservoirs. NRIAG Journal of Astronomy and Geophysics, 6(1), 255-268. https://doi.org/10.1016/j.nrjag.2017.03.006
Nelson, P.H. (1994). Permeability-Porosity Relationships in Sedimentary Rocks. Log Analyst, 35(3), 38-62.
Potter, D.K. & Stephenson, A. (1988). Single-domain particles in rocks and magnetic fabric analysis. Geophysical Research Letters, 15(10), 1097-1100. https://doi.org/10.1029/GL015i010p01097
Rathnaweera, T.D., Ranjith, P.G., Perera, M.S.A. & Zhou, F. (2018). Characterisation of the effect of water saturation on the mechanical behaviour of reservoir rock using micro-computed tomography and acoustic emission techniques. Marine and Petroleum Geology, 91, 720-735. https://doi.org/10.1016/j.marpetgeo.2018.02.035
Rindel, A.K. & Chatterjee, R. (2016). Reservoir characterization of a tight gas sandstone reservoir using a multi-scale approach: a case study from Krishna Godavari basin, India. Journal of Petroleum Science and Engineering, 145, 157-173. https://doi.org/10.1016/j.petrol.2016.04.024
Schmidt, V. & McDonald, D.A. (1979). The role of secondary porosity in the course of sandstone diagenesis. SEPM Special Publication, 26, 175-207. https://doi.org/10.2110/pec.79.26.0175
Soto, J., Rueda, L., Zuluaga, L., Rueda, J., Sandoval, M., Achong, N., Reyes, A., Martínez, S., Torres, J., Vargas, J., Garzón, G. & Ladino, M. (2018). Evaluación del comportamiento de arenas arcillosas de Colombia en procesos de recuperación mejorada de hidrocarburos con inyección cíclica de CO2. Revista Fuentes, 16(2), 165-178. https://doi.org/10.18273/revfue.v16n2-2018008
Weibel, R. & Friis, H. (2007). Reservoir quality effects of diagenesis in feldspathic sandstones from the Lower Jurassic Gassum Formation, Norwegian–Danish Basin. Geological Society, London, Special Publications, 270(1), 95-110. https://doi.org/10.1144/GSL.SP.2007.270.01.07