Systematic Review of AI-Based Cognitive Training Programs: Algorithms, Populations, and Stimulated Cognitive Domains
Revisión sistemática de programas de entrenamiento cognitivo basados en IA: algoritmos, poblaciones y dominios cognitivos estimulados
Contenido principal del artículo
Resumen
This article presents a literature review divided into two phases. The first phase exposes the findings from the grey literature on cognitive training programs that implement artificial intelligence strategies with commercial use. The second phase shows the results of the search conducted in scientific databases, focusing on studies that describe the design and implementation of software for cognitive training using artificial intelligence algorithms. The objective has been to identify which intelligent algorithms were implemented, which functionalities or moments within the cognitive training these algorithms intervene, which populations have been studied, and which cognitive domains were stimulated. The review was conducted following the PRISMA protocol (Preferred Reporting Items for Systematic reviews and Meta-Analyzes), guided by a research question that directed both the search for commercial software in the grey literature and the search in seven scientific databases. In the grey literature, 31 commercially available cognitive training platforms that use intelligent algorithms were identified, while 291 records were extracted from scientific journals. Both commercial programs and articles were filtered according to the established inclusion criteria to obtain a final selection of four programs and nine articles used for the purposes of this study in the analysis phase. The findings showed that the most used intelligent algorithms are recommendation systems, particularly collaborative filtering ones, and they are mainly used to propose challenges during training sessions or to vary the difficulty of exercises based on the participants’ results. The target population for commercial platforms includes participants of any age, particularly middle-aged adults, while the most studied age groups in the research focus on children with learning disorders and adults aged 60 to 90 years with cognitive decline or brain injuries. In both cases, they aim to stimulate cognitive domains such as attention, memory, and executive functions to a greater extent.
Descargas
Detalles del artículo
Referencias (VER)
Antunes, A., & Madeira, R. (2021). PLAY - Model-based Platform to Support Therapeutic Serious Games Design. Procedia Computer Science, 198, pp. 211-218. doi: https://doi.org/10.1016/j.procs.2021.12.230
Bainbridge , K., & Mayer, R. (2017). Shining the Light of Research on Lumosity. Journal of Cognitive Enhancement, 2, pp. 43-62. doi: https://doi.org/10.1007/s41465-017-0040-5
Baldisseri, F., Maiani, A., Montecchiani, E., Delli Priscoli, F., Giuseppi, A., Menegatti, D., & Fogliati, V. (2022). An Integrated Music and Artificial Intelligence System in Support of Pediatric Neurorehabilitation. Healthcare, 10(10), pp. 1-11. doi: https://doi.org/10.3390/healthcare10102014
Barocas, S., Hardt, M., & Narayanan, A. (2023). Classification. Fairness and machine learning Limitations and Opportunities. London: The MIT Press, pp. 49-80.
Barranco, M., Pérez , L., & Martinez, L. (2006). Un Sistema de Recomendación Basado en Conocimiento con Información Lingüística Multigranular. In Proceedings of the SIGEF XIII: Optimization techniques: Fuzziness and nonlinearity for management and economy, pp. 645-664.
Berrío, A. (2020). Sistemas de Recomendación, tesis (Grado en Estadística), Valladolid. Universidad de Valladolid, España, p. 4. http://uvadoc.uva.es/handle/10324/43778.
Bhareti, K., Perera, S., Jamal, S., Pallege, M. H., Akash, V., & Wiieweera, S. (2020). A Literature Review of Recommendation Systems. 2020 IEEE International Conference for Innovation in Technology (INOCON). Bangluru, India, pp. 1-7. doi: https://doi.org/10.1109/INOCON50539.2020.9298450
BrainHQ. (23 de 11 de 2015). Posit Science lanza programa de entrenamiento cerebral en español. Obtenido de https://www.brainhq.com/news/latest-news/posit-science-lanza-programa-de-entrenamiento-cerebral-en-espanol/
BrainHQ. (08 de 04 de 2024). BrainHQ: Personalized Training. Obtenido de https://support.brainhq.com/hc/en-us/articles/360033432171-How-the-Personal-Trainer-picks-exercises
Budianto, I., Yusrotis, A., & Sari, A. (s.f.). Web Based Video Games Recommendation System Using Collaborative Filtering Method. 2023 International Conference on Informatics, Multimedia, Cyber and Information Systems (ICIMCIS), pp. 549-554. doi: https://doi.org/10.1109/ICIMCIS60089.2023.10348983
CogniFit. (s.f.). Evaluaciones cognitivas. Recuperado el 28 de 02 de 2024, de https://www.cognifit.com/ec/test-cognitivo#:~:text=La%20Evaluaci%C3%B3n%20Cognitiva%20para%20conductores,visual%20y%20tiempo%20de%20respuesta
CogniFit. (s.f.). Individualized Training System™ (ITS): Personalized Brain Fitness Programs. Recuperado el 02 de 28 de 2024, de https://www.cognifit.com/cognifit-individualized-training-system
Cortés Luque, E. (s.f.). Sincrolab: Inteligencia artificial para entrenar el cerebro. Recuperado el 24 de 02 de 2024, de https://blogthinkbig.com/peoplefirst/sincrolab-inteligencia-artificial
Eun, S., Kim, E., & Kim , J. (2022). Development and Evaluation of an Artificial Intelligence–Based Cognitive Exercise Game: A Pilot Study. Journal of Enviromental and Public Health, pp. 1-15. doi: https://doi.org/10.1155/2022/4403976
Fajardo Cuéllar, A., & Wobbeking Sánchez, M. (2020). Programa de intervención para estimular la reserva cognitiva en el enjecimiento activo. Studia Zamorensia, XIX, 19, pp. 91-101.
González-González , C., Toledo-Delgado, P., Muñoz-Cruz, V., & Torres-Carrión, P. (2019). Serious games for rehabilitation: Gestural interaction in personalized gamified exercises through a recommender system. Journal of Biomedical Informatics, 97, pp. 1-19. doi: https://doi.org/10.1016/j.jbi.2019.103266
Hardy, J., & Scanlon, M. (2009). The sciencia behind Lumosity. Obtenido de https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=17e03b5d406520ea079533c30f4fbbbb72bb7178
Herpich, M., Rist, T., Seiderer, A., & Andre, E. (s.f.). Towards a Gamified Recommender System for the Elderly. DH '17: Proceedings of the 2017 International Conference on Digital Health. London, United Kingdom, New York: United States, pp. 211-215. doi: https://doi.org/10.1145/3079452.3079500
Hyman, K. (2017). Is Lumosity an effective brain training program?: A meta-analysis of the existing research. Carolina del Norte: Western Carolina University. Obtenido de https://api.semanticscholar.org/CorpusID:149209529
Imbeault, F., Bouchard, B., & Bouzouane, A. (2011). Serious Games in Cognitive Training for Alzheimer’s Patients. 2011 IEEE 1st International Conference on Serious Games and Applications for Health (SeGAH), Braga, Portugal, pp. 1-8. doi: https://doi.org/10.1109/SeGAH.2011.6165447
Jara Madrigal, M. (2008). Estimulación cognitiva en personas adultas mayores. Revista Cúpula, 22(2), pp. 4-14.
Kim, J. J., Kim, Y.-J., Lee, H.-M., Lee, S.-H., & Chung, S.-T. (2018). Personalized Recommendation System for Efficient Integrated Cognitive Rehabilitation Training Based on Bigdata, Stephanidis, C. (eds) HCI International 2018 – Posters' Extended Abstracts. HCI 2018. Communications in Computer and Information Science, vol 851, Cham: Springer, pp. 32-39. doi: https://doi.org/10.1007/978-3-319-92279-9_4
Kotyrba, M., Habiballa, H., Volná, E., Jarušek, R., Smolka, P., Prášek, M., . . . Kulišťák, P. (2022). Expert System for Neurocognitive Rehabilitation Based on the Transfer of the ACE-R to CHC Model Factors. Expert System for Neurocognitive Rehabilitation Based on the Transfer of the ACE-R to CHC Model Factors, 11(1), pp. 1-19. doi: https://doi.org/10.3390/math11010007
Kpolovie, P. (2012). Lumosity training and brain-boosting food effects on learning. Education Research Journal , 2(6), pp. 217-230.
Laseno, F., & Hendradjaya, B. (2019). Knowledge-Based Filtering Recommender System to Propose Design Elements of Serious Game. 2019 International Conference on Electrical Engineering and Informatics (ICEEI), Bandung, pp. 158-163. doi: https://doi.org/10.1109/ICEEI47359.2019.8988797
Lumos Lab. (16 de Marzo de 2017). Meet Lumosity's Research Team. Obtenido de https://www.lumosity.com/en/blog/meet-lumositys-research-team
Mahncke, H. (2020). How can I compare my performance to others? Obtenido de https://support.brainhq.com/hc/en-us/articles/360031596611-How-can-I-compare-my-performance-to-others
Martínez Ferreras, D. (2017). . Sistemas automatizados de gestión de tesauros. Tesauros en línea. Los tesauros. Barcelona, pp. 31-34, Universidad Oberta de Cataluya. https://openaccess.uoc.edu/bitstream/10609/236/9/Fundamentos%20de%20lenguajes%20documentales_M%C3%B3dulo5_Los%20tesauros.pdf
Mateer, C. (2003). Introducción a la rehabilitación cognitiva. Avances en Psicología Clínica Latinoamericana, 21, pp. 11-20.
Navarro , J., Faiyaz , D., Zamudio, V., Iqbalc, R., Kumar Sangaiah, A., & Lino, C. (2018). Fuzzy adaptive cognitive stimulation therapy generation for Alzheimer’s sufferers: Towards a pervasive dementia care monitoring platform. Future Generation Computer Systems, 88, pp. 479-490. doi: https://doi.org/10.1016/j.future.2018.06.018
O'Connor, D., Green, S., & Higgins, J. (2008). Defining the Review Question and Developing Criteria for Including Studies. En T. J. Higgins JPT, Cochrane Handbook for Systematic Reviews of Interventions. Chichester, pp. 81-94, John Wiley & Sons. doi: https://doi.org/10.1002/9780470712184.ch5
Ogata, H., Flanagan, B., Takami, K., Dai, Y., Nakamoto, R., & Takii, K. (2023). EXAIT: Educational eXplainable Artificial Intelligent Tools for personalized learning. Research and Practice in Technology Enhanced Learning, 19, pp. 1-30. doi: https://doi.org/10.58459/rptel.2024.19019
Page, M., McKenzie, J., Bossuyt, P., Boutron, I., Hoffmann 5, T., Mulrow, C., . . . Brennan, S. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372(70). doi: https://doi.org/10.1136/bmj.n71
Peña, S., & Raymondi, W. (2023). Análisis de las predicciones en un filtro colaborativo basado en el algoritmo ALS para una empresa de comida rápida en la ciudad de Guayaquil. Guayaquil, pp. 16-47, Editorial Tecnocientífica Americana. doi: https://doi.org/10.51736/eta.vi.58
Prins, P. &. (2013). “Braingame Brian”: Toward an Executive Function Training Program with Game Elements for Children with ADHD and Cognitive Control Problems. Games for Health Journal, 2(1), pp. 44-49. doi: https://doi.org/10.1089/g4h.2013.0004
Rennie, J., Zhang, M., Hawkins, E., Bathelt, J., & Astle, D. (2020). Mapping differential responses to cognitive training using. Dev Sci, 23(12868), pp. 1-15. doi: https://doi.org/10.1111/desc.12868
Rocha, R., Fernandes, S., & Santos, I. (2023). The Importance of Technology in the Combined Interventions of Cognitive Stimulation and Physical Activity in Cognitive Function in the Elderly: A Systematic Review. Healthcare, 11(17), pp. 1-20. doi: https://doi.org/10.3390/healthcare11172375
Rosell, J. (2018). Estimulación cognitiva para personas mayores sanas mediante programas computarizados: una revisión de la literatura. Estudios de Psicología = Studies in Psychology, 39(2-3), pp. 421-436. doi: https://doi.org/10.1080/02109395.2018.1494678
Shahmoradi, L., Mohammed, F., & Rahmani, M. (2022). A Systematic Review on Serious Games in Attention Rehabilitation and Their Effects. Behavioural Neurology, pp. 1-32. doi: https://doi.org/10.1155/2022/2017975
Shen, X., & Xu, C. (2021). Research on children’s cognitive development for learning. Concurrency Computat Pract Exper, 33(6097). doi: https://doi.org/10.1002/cpe.6097
Synaptikon GmbH. (s.f.). Neuronation. Recuperado el 21 de 02 de 2024, de https://www.neuronation.com/science/fr/la-science-derriere-neuronation/
Tetlow, A., & Edwards, J. (2017). Systematic Literature Review and Meta-Analysis of Commercially Available Computerized Cognitive Training Among Older Adults. Journal of Cognitive Enhancement, pp. 559-575. doi: https://doi.org/10.1007/s41465-017-0051-2
Trápaga-Ortega, C., Pelayo-González, H., Sánchez-Ortiz, I., Bello-Dávila, Z., & Bautista Baños, A. (2018). De la psicología cognitiva a la neurosicología. Madrid: El manual moderno, pp. 20-83.
Tsiakas, K., Barakova, E., Khan, J.-V., & Markopoulos, P. (2020). BrainHood: Designing a cognitive training system that supports self-regulated learning skills in children. Technology and Disability, 32(4), pp. 219-228. doi: https://doi.org/10.3233/TAD-200294
Valenzuela, M., & Sachdev, P. (2005). Brain reserve and dementia: a systematic review. Psychological Medicine, 36(4), pp. 441-454. doi: https://doi.org/10.1017/S0033291705006264
Villalba Agustín, S., & Espert Tortajada, R. (2014). Estimulación cognitiva: Una revisión neuropsicológica. Therapeía, 6, pp. 73-94.
Wilms, I. (2011). Using Artificial Intelligence to Control and Adapt Level of Difficulty in Computer-Based, Cognitive Therapy – an Explorative Study. Journal of Cyber Therapy and Rehabilitation, pp. 387-396.
Yue, L., Chen, W.-g., Liu, S.-c., Chen, S.-b., & Xiao, S.-f. (2023). An explainable machine learning based prediction model for Alzheimer's disease in China longitudinal aging study. Frontiers in aging neuroscience, 15. doi: https://doi.org/10.3389/fnagi.2023.1267020
Yun, Y., Dai, H., Zhang, Y., Wei, S., & Shang, X. (2022). Interpretable Educational Recommendation: An Open Framework based on Bayesian Principal Component Analysis. Conference: 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3409-3414. doi: https://doi.org/10.1109/SMC53654.2022.9945498
Zamarrón, M. (2007). Envejecimiento activo: un reto indivudial y social. Sociedad y utopía: Revista de ciencias sociales, 34, pp. 449-463.