Evaluation of extracellular enzymatic activity in the Aburrá-Medellín river as a response to variations in water quality and flow regime

Evaluación de la actividad enzimática extracelular en el río Aburrá-Medellín como respuesta a variaciones en la calidad del agua y el régimen de caudal

Contenido principal del artículo

Alejandra Cifuentes Zapata
Lina Claudia Giraldo Buitrago
Néstor Jaime Aguirre Ramírez

Resumen

The Aburrá-Medellín river has been affected by urbanization processes in its basin, which has altered its physicochemical profile. In order to identify patterns in the enzymatic activity associated with variations in water quality and flow regime, the activity of the β-glucosidase and phosphatase enzymes, related to carbon and phosphorus metabolism, respectively, was measured in the water and biofilm. For this purpose, nine monitoring stations with different degrees of anthropic intervention were selected, which were evaluated during low, medium and high flow regimes associated with meteorological variability in the basin. The hypothesis was that the physicochemical profile, water quality and flow regime affect the activity of both enzymes, both in the water and in the biofilm, since they influence the concentration of nutrients transported by the river. According to the results obtained, no statistically significant differences were found in the enzymatic activity at low, medium and high flow rates, although a higher concentration of nutrients was observed at low and medium flow rates than at high flow rates. On the other hand, it was observed that the concentration of nutrients in the river changed according to the degree of urbanization in the basin, due to the discharge of wastewater from densely populated municipalities. The activity of both enzymes was higher in the stations with higher concentrations of nutrients, while in the monitoring stations located in the upper zone of the basin, where anthropic intervention and the concentration of nutrients was low, the lowest enzymatic activities were found both in the water and in the biofilm. In this regard, enzymatic activity can be used as an indicator of the health of the Aburrá-Medellín river and it is suggested that the measurement of this variable be included in the framework of the RedRío monitoring network.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

APHA, AWWA, WEF (2012) Standard Methods for the Examination of Water and Wastewater, 22nd ed. American Public Health Association, American Water Works Association, Water Environment Federation, Washington, DC.

Área Metropolitana del Valle de Aburrá-AMVA (2012) Resolución Metropolitana 2016 de 2012 por medio de la cual se adoptan nuevos objetivos de calidad del Río Medellín-Aburrá, para el periodo 2012-2022.

Área Metropolitana del Valle de Aburrá-AMVA; Universidad de Antioquia-UdeA (2019) Aunar Esfuerzos para la Gestión Integral del Recurso Hídrico Superficial y Subterráneo, en el marco de la operación de la Red de Monitoreo Ambiental en la cuenca hidrográfica del río Aburrá-Medellín C643/2019: Informe Final de Calidad de Agua Superficial.

Artigas J, Romaní AM, Gaudes A, et al (2009) Organic matter availability structures microbial biomass and activity in a Mediterranean stream. Freshwater Biology 54:2025–2036. https://doi.org/10.1111/j.1365-2427.2008.02140.x.

Artigas J, Gaudes A, Muñoz I, et al (2011) Fungal and Bacterial Colonization of Submerged Leaf Litter in a Mediterranean Stream. International Review of Hydrobiology 96:221–234. https://doi.org/10.1002/iroh.201111355.

Arthington AH, Naiman RJ, McClain ME, Nilsson C (2010) Preserving the biodiversity and ecological services of rivers: new challenges and research opportunities. Freshwater Biology 55:1–16. https://doi.org/10.1111/j.1365-2427.2009.02340.x

Assessment Millennium Ecosystem (2005) Ecosystems and human well-being. Washington, DC

Berrio-Restrepo JM, Saldarriaga JC, Correa MA, Aguirre NJ. Extracellular enzymatic activity of two hydrolases in wastewater treatment for biological nutrient removal. Appl Microbiol Biotechnol. 2017 Oct;101(19):7385-7396. doi: 10.1007/s00253-017-8423-1. Epub 2017 Aug 7. PMID: 28782075

Chróst RJ (1990) Microbial Ectoenzymes in Aquatic Environments. In: Overbeck J, Chróst RJ (eds) Aquatic Microbial Ecology: Biochemical and Molecular Approaches. Springer New York, New York, NY, pp 47–78.

Chróst RJ, Siuda W (2002) Ecology of microbial enzymes in lake ecosystems. In: Burns RG, Dick RP (eds) Enzymes in the Environment: Activity, Ecology, and Applicationsctivity, ecology, and applications. Marcel Dekker, Inc, New York, NY, pp 35–72.

Cifuentes A (2015) Determinación de la actividad enzimática extracelular en el tramo km 5.8-km 37.1 del río Aburrá-Medellín en el agua y el biofilm (Antioquia-Colombia). Universidad de Antioquia, Medellín, Colombia. Trabajo de Investigación de Pregrado en Ingeniería Ambiental, Facultad de Ingeniería.

CORANTIOQUIA, Área Metropolitana del Valle de Aburrá, Cornare, et al (2018) Actualización Plan de Ordenación y Manejo de la Cuenca Hidrográfica Río Aburrá.

Coundoul F, Bonometti T, Graba M, et al (2014) Role of Local Flow Conditions in River Biofilm Colonization and Early Growth. River Research and Applications 31:350–367. https://doi.org/10.1002/rra.2746.

Cunha A, Almeida A, Coelho F, et al (2010) Bacterial Extracellular Enzymatic Activity in Globally Changing Aquatic Ecosystems. Current Reseach, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology 124–135

DANE (2019) Resultados Censo Nacional de Población y Vivienda 2018.

Dunham JB, Angermeier PL, Crausbay SD, et al (2018) Rivers are social – ecological systems : Time to integrate human dimensions into riverscape ecology and management. WIREs Water 1–10. https://doi.org/10.1002/wat2.1291

Hernández E., N. J. Aguirre, and J. A. Palacio, “Relación entre la determinación del pigmento Clorofila a y el Biovolumen geométrico algal en un lago de planicie de inundación (Ciénaga de Ayapel, Córdoba-Colombia),” Revista Facultad de Ingeniería Universidad de Antioquia, vol. 60, pp. 159–169, 2011.

Findlay S (2010) Stream microbial ecology. Journal of the North American Benthological Society 29:170–181. https://doi.org/10.1899/09-023.1

Freixa A, Perujo N, Langenheder S, Romaní AM (2020) River biofilms adapted to anthropogenic disturbances are more resistant to WWTP inputs. 96:1–12. https://doi.org/10.1093/femsec/fiaa152

Fundación EPM, Gobernación de Antioquia (2018) Antioquia un territorio para proteger. Actualización y monitoreo del estado del recurso hídrico. Medellín

Giraldo LC (2013) Dinámica de la calidad química del agua, algas epilíticas, macroinvertebrados acuáticos y actividad enzimática del sistema fluvial río Aburrá-Medellín en el tramo k5-k48. Universidad de Antioquia

Giraldo LC, Palacio CA, Aguirre NJ (2015) Epiphyton Colonization on Artificial Substrates in the Aburrá-Medellin River, Colombia. The International Journal of Environmental Protection 5(1):16-24. DOI:10.5963/IJEP0501003.

Giraldo LC, Palacio CA, Aguirre NJ (2014) Temporal Variation of the Extracellular Enzymatic Activity (EEA): Case of Study Aburra-Medellín River, in the Valle de Aburra in Medellin, Antioquia, Colombia. International Journal of Environmental Protection 4:58–67

Grajales H (2019) Dinámica ambiental de los nutrientes nitrógeno, fósforo y sílice y su relación con la calidad del agua en el embalse Porce II, municipio de Amalfi, Antioquia, Colombia. Universidad de Antioquia, Medellín, Colombia.

Harbott EL, Grace MR (2005) Extracellular enzyme response to bioavailability of dissolved organic C in streams of varying catchment urbanization. Journal of the North American Benthological Society 24:588–601. https://doi.org/10.1899/04-023.1

Hosen JD, McDonough OT, Febria CM, Palmer MA (2014) Dissolved oganic matter quality and bioavailability changes across an urbanization gradient in headwater streams. Environmental Science & Technology 48:7817–7824. https://doi.org/10.1021/es501422z

Instituto de Hidrología Meteorología y Estudios Ambientales (IDEAM), “Guia para el monitorieo de vertimientos, aguas superficiales y subterráneas,” 2003.

Jaramillo MT, Aguirre NJ, Galvis JH (2016) Using Extracellular Enzyme Activity as a Pollutant Indicator: a Field Study in Chinchiná River, Caldas-Colombia. International Journal of Environmental Protection 6:47–59. https://doi.org/10.5963/IJEP0601004

Jiménez Pérez P, Toro Restrepo B, Hernández Atilano E (2014) Relación entre la comunidad de fitoperifiton y diferentes fuentes de contaminación en una quebrada de los Andes colombianos. Boletín Científico Centro de Museos Museo de Historia Natural Universidad de Caldas 18:49–66

Lehto LLP, Hill BH (2013) The effect of catchment urbanization on nutrient uptake and biofilm enzyme activity in Lake Superior (USA) tributary streams. Hydrobiologia 713:35–51. https://doi.org/10.1007/s10750-013-1491-z

Martin-Ortega J, Ferrier RC, Gordon IJ, Khan S (2015) Water ecosystem services: A global perspective. UNESCO Publishing

Marxsen J, Tippmann P, Heininger H, et al (1998) Enzymaktivität. In: Remde A, Tippmann P (eds) Mikrobiologische Charakterisierung aquatischer Sedimente: Methodensammlung. vol (Hrsg.) Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Oldenbourg Verlag GmbH, München. pp 87–114

Millar JJ, Payne JT, Ochs CA, Jackson CR (2015) Particle-associated and cell-free extracellular enzyme activity in relation to nutrient status of large tributaries of the Lower Mississippi River. Biogeochemistry 124:255–271. https://doi.org/10.1007/s10533-015-0096-1

Nedoma J, García J, Comerma M, et al (2006) Extracellular phosphatases in a Mediterranean reservoir: Seasonal, spatial and kinetic heterogeneity. Freshwater Biology 51:1264–1276. https://doi.org/10.1111/j.1365-2427.2006.01566.x

Osorio V, Proia L, Ricart M, et al (2013) Hydrological variation modulates pharmaceutical levels and biofilm responses in a Mediterranean river. Science of The Total Environment 472:1052–1061. https://doi.org/10.1016/j.scitotenv.2013.11.069

Paul M, Meyer J (2008). Streams in the Urban Landscape.

Pohlon E, Marxsen J, Küsel K (2010) Pioneering bacterial and algal communities and potential extracellular enzyme activities of stream biofilms. FEMS Microbiology Ecology 71:364–373. https://doi.org/10.1111/j.1574-6941.2009.00817.x

Roldán G., Guía para el estudio de los macroinvertebrados acuáticos del Departamento de Antioquia. Bogotá D.C., Colombia, 1996.

Romaní A, Sabater S. (1999). Epilithic ectoenzyme activity in a nutrient-rich Mediterranean river. Aquatic Sciences 61:122-132. https://doi.org/1015-1621/99/020122-11.

Romaní AM, Guasch H, Muñoz I, et al (2004) Biofilm structure and function and possible implications for riverine DOC dynamics. Microbial ecology 47:316–328. https://doi.org/10.1007/s00248-003-2019-2

Romaní A, Fischer H, Lindblom C, Tranvik L (2006) Interactions of bacteria and fungi on decomposing litter: differential extracellular enzyme activities. Ecology 87:2559–2569

Romaní A, Artigas J, Camacho A, et al (2009) La biota de los ríos: los microorganismos heterotróficos. In: Elosegi A, Sabater S (eds) Conceptos y Técnicas en ecología fluvial. Fundacion BBVA, p 448

Rossi F, Mallet C, Portelli C, et al (2019) Stimulation or inhibition : Leaf microbial decomposition in streams subjected to complex chemical contamination. Science of the Total Environment 648:1371–1383. https://doi.org/10.1016/j.scitotenv.2018.08.197

Sabater S, Guasch H, Romaní A, Muñoz I (2002) The effect of biological factors on the efficiency of river biofilms in improving water quality. Hydrobiologia 469: 149-156. https://doi.org/10.1023/A:1015549404082.

Sabater S, Barceló D, De Castro-Català N, et al (2016) Shared effects of organic microcontaminants and environmental stressors on biofilms and invertebrates in impaired rivers. Environmental Pollution 210:303–314. https://doi.org/10.1016/j.envpol.2016.01.037

Sabater S, Timoner X, Borrego C, Acuña V (2016) Stream Biofilm Responses to Flow Intermittency: From Cells to Ecosystems. Frontiers in Environmental Science 4:1–10. https://doi.org/10.3389/fenvs.2016.00014

Sistema de Alerta Temprana (SIATA), “Informe del Componente Hidráulico,” 2017.

Sistema de Alerta Temprana (SIATA), “Informe del Componente Hidráulico,” 2018.

The Quintessence Consortium (2016) Networking Our Way to Better Ecosystem Service Provision. Trends in Ecology & Evloution 31:105–115. https://doi.org/10.1016/j.tree.2015.12.003

Thoms M, Sheldon F (2019) Large rivers as complex adaptive ecosystems. River Research and Applications 35:451–458. https://doi.org/10.1002/rra.3448

Tiquia SM (2011) Extracellular Hydrolytic Enzyme Activities of the Heterotrophic Microbial Communities of the Rouge River: An Approach to Evaluate Ecosystem Response to Urbanization. Microbial Ecology 62:679–689. https://doi.org/10.1007/s00248-011-9871-2

Tümpling W V., Friedrich G (1999) Methoden der Biologischen Wasseruntersuchung 2. Biologische Gewässerunchung

Wetzel RG (1991) Extracellular Enzymatic Interactions: Storage, Redistribution, and Interspecific Communication. In: Chróst RJ (ed) Microbial Enzymes in Aquatic Environments. Springer New York, New York, NY, pp 6–28

Wilczek S, Fischer H, Pusch MT (2005) Regulation and seasonal dynamics of extracellular enzyme activities in the sediments of a large Lowland River. Microbial Ecology 50:253–267. https://doi.org/10.1007/s00248-004-0119-2

Williams CJ, Scott AB, Wilson HF, Xenopoulos MA (2011) Effects of land use on water column bacterial activity and enzyme stoichiometry in stream ecosystems. Aquatic Sciences 74:483–494. https://doi.org/10.1007/s00027-011-0242-3

Ylla I, Canhoto C, Romaní AM (2014) Effects of Warming on Stream Biofilm Organic Matter Use Capabilities. Microbial Ecology 68:132–145. https://doi.org/10.1007/s00248-014-0406-5