Space-time variation in water quality of the Aburrá-Medellín river using electrical conductivity in the period 2010-2020. Part 2
Variación espacio-temporal de la calidad del agua del río AburráMedellín utilizando la conductividad eléctrica en el periodo 2010-2020. Parte 2
Contenido principal del artículo
Resumen
The deterioration of the environment and especially the crisis due to the
availability of water, has led developing countries to advance in protection, avoiding
the dumping of wastewater and monitoring quality. In the city of Medellín, the use
of electrical conductivity as an indicator of water quality in the Aburrá-Medellín
river was proposed as an alternative to explain and keep the community informed
about how the river monitoring stations are doing through of colors and thus
continue to raise awareness of the importance of caring for water. In order to
study the spatial and temporal variations of the water quality in the river from the
electrical conductivity indicator, and considering the categorical data obtained with
the indicator, a number from 1 to 5 was assigned (very bad, bad , regular, acceptable
and good quality, respectively). In these paper We used statistical methods as
crosstabulation to describe relationships between the categorical variables through
counts and multiple correspondence analysis for representing the associations
between the factors affecting the wáter quality using the correspondence maps. It
was found that low flows correspond to the most critical quality conditions, and
although a deterioration is observed as the river flows downstream (between the
monitoring stations) the influence of the water levels is greater. The statistical
analysis showed a relatively high association of the quality indicator and the flows
also, that the water quality deteriorates in the afternoon and in the final years of
monitoring in low flows.
Descargas
Detalles del artículo
Referencias (VER)
Abbasi, T.; Abbasi, S. A. (2012). Water quality indices. Elsevier. ISBN: 9780444543042. DOI: https://doi.org/10.1016/C2010-0-69472-7
Área Metropolitana del Valle de Aburrá, Universidad de Antioquia, Universidad Nacional de Colombia - Sede Medellín, Universidad Pontificia Bolivariana, and Universidad de Medellín, “Red de Monitoreo Ambiental en la cuenca hidrográfica del río Aburrá-Medellín en jurisdicción del Área Metropolitana-Fase III,” Medellín, Colombia, 2011.
Área Metropolitana del Valle de Aburrá, Universidad de Antioquia, Universidad Nacional de Colombia - Sede Medellín, Universidad Pontificia Bolivariana, and Universidad de Medellín, “Red de Monitoreo Ambiental en la cuenca hidrográfica del río Aburrá-Medellín en jurisdicción del Área Metropolitana-Fase IV,” Medellín, Colombia, 2014.
Área Metropolitana del Valle de Aburrá and Universidad de Antioquia, “Red de Monitoreo Ambiental en la cuenca hidrográfica del río Aburrá-Medellín en jurisdicción del Área Metropolitana-Fase V,” Medellín, Colombia, 2016.
Área Metropolitana del Valle de Aburrá and Universidad de Antioquia, “Plan de Ordenamiento del Recurso Hídrico -PORH- del río Aburrá-Medellín” Medellín, Colombia, 2018.
Área Metropolitana del Valle de Aburrá and Universidad de Antioquia, “Aunar esfuerzos para la apropiación tecnológica y del conocimiento para la gestión integral del recurso hídrico superficial y subterráneo, en el contexto de la operación de la red de monitoreo ambiental en la cuenca hidrográfica del río Aburrá-Medellín y,” Medellín, Colombia, 2019.
Área Metropolitana del Valle de Aburrá and Universidad de Antioquia, “Aunar esfuerzos para la Gestión Integral del Recurso Hídrico superficial y subterráneo, en el marco de la operación de la Red de Monitoreo Ambiental en la cuenca hidrográfica del río Aburrá-Medellín,” Medellín, Colombia, 2020.
Carrasco, L.; Barata, C.; García-Berthou, E.; Tobias, A.; Bayona, J. M.; Díez, S. (2011). Patterns of mercury and methylmercury bioaccumulation in fish species downstream of a long-term mercury-contaminated site in the lower Ebro River (NE Spain). Chemosphere, 84(11), 1642-1649. DOI: https://doi.org/10.1016/j.chemosphere.2011.05.022
Carrera D,. Guevara, P., Andrade, V.; Piedra, P. (2016). Análisis multitemporal de los parámetros potencial de hidrógeno, conductividad eléctrica y cloruros del sistema hidrográfico del Río Ambi - Yachay Investigación y Desarrollo, ISSN 1390-7042/ Año IV / Volumen 1 / Número 6 / Quito, Julio 2016.
Claghorn, J.; Orsini, F. M.; Restrepo, C. A. E.; Werthmann, C. (2015). Rehabitar la Montaña: strategies and processes for sustainable communities in the mountainous periphery of Medellín. Revista Brasileira de Gestão Urbana, 8, 42-60. DOI: https://doi.org/10.1590/2175-3369.008.001.SE03
Dourojeanni A. and Jouravlev A., Gestión de cuencas y ríos vinculados con centros urbanos. 199 DOI:: http://hdl.handle.net/11362/31384
Faradiba, F.; Azzahra, S. F. (2021). Pollution Analysis in Rural Areas in Indonesia Using the Multiple Correspondence Analysis (MCA) Method. International Journal of Research Publications, 69(1), 1-15. DOI: https://doi.org/100691120211671
Garizi, A. Z.; Sheikh, V.; Sadoddin, A (2015). Using multivariate statistical analysis, geostatistical techniques and structural equation modeling to identify spatial variability of groundwater quality. Water Resources Management, 29(6), 2073-2089. DOI: https://doi.org/10.1007/s11269-015-0929-7
Garizi, A.Z.; Sheikh, V; Sadoddin, A. (2011). Assessment of seasonal variations of chemical characteristics in surface water using multivariate statistical methods. Int. J. Environ. Sci. Technol. 8, 581–592. DOI: https://doi.org/10.1007/BF03326244
Giraldo L., Agudelo and Palacio, “Spatial and temporal variation of nitrogen in the Medellin river,” DYNA, no. 163, pp. 124–131, 2010.
Giraldo, L. “Dinámica de la calidad química del agua, algas epilíticas, macroinvertebrados acuáticos y actividad enzimática del sistema fluvial río Aburrá-Medellín en el tramo k5-k48,” Universidad de Antioquia, Medellín, Colombia, 2013
Giraldo L., Betancur T. and Agudelo R. Integrated management of surface and groundwater in an urban environment - Aburrá-Medellín river basin. Conference: 38th IAHR World Congress. September 2019. DOI: 10.3850/38WC092019-1727
Giraldo, L. (2022). Aburrá- Medellín River Water Quality Space-Time Variation from the Electrical Conductivity and Its Use as an Indicator of Quality.Revista EIA, 19(38), Reia3805. pp. 1-20. https://doi.org/10.24050/reia.v19i38.1525
Johnson, R. A.; Wichern, D. W. (2014). Applied multivariate statistical analysis 6th edition, London, Pearson. ISBN: 978-0-13-514350-6
Lavoie, I.; Campeau, S.; Grenier, M.; Dillon, P. J. (2006). A diatom-based index for the biological assessment of eastern Canadian rivers: an application of correspondence analysis (CA). Canadian Journal of Fisheries and Aquatic Sciences, 63(8), 1793-1811. DOI: https://doi.org/10.1139/f06-084
Ministerio de ambiente y desarrollo sostenible (2015). Decreto 1076 Por medio del cual se expide el decreto único reglamentario del Sector Ambiente y Desarrollo Sostenible. 26 de mayo de 2015. Retrieved from: https://www.minambiente.gov.co/wp-content/uploads/2021/06/Decreto-1076-de-2015.pdf
Peña, D. (2002). Análisis de datos multivariantes, Madrid, McGraw-hill. ISBN: 978-8448136109.
Rencher, A. C.; Schimek, M. G. (2001). Methods of multivariate analysis, 2nd ed., Wiley series in probability and mathematical statistics, New York. DOI: https://doi.org/10.1080/07408170500232784
Rodríguez E., “Deterioro y recuperación de rondas de ríos en grandes ciudades: enfoque ambiental, paisajístico y urbano para el Río Bogotá,” Universidad de La Salle, Bogotá, Colombia, 2016. DOI: https://ciencia.lasalle.edu.co/arquitectura/684
Sun, W.; Xia, C.; Xu, M.; Guo, J.; Sun, G. (2016). Application of modified water quality indices as indicators to assess the spatial and temporal trends of water quality in the Dongjiang River. Ecological Indicators, 66, 306-312. DOI: https://doi.org/10.1016/j.ecolind.2016.01.054
Yap, C. K. (2013). Variations of Electrical Conductivity between Upstream and Downstream of Langat River, Malaysia: Its Significance as a Single Indicator of Water Quality Deterioration. Pertanika Journal of Tropical Agricultural Science, 36(4).
El Niño and La Niña Years and Intensities. Based on Oceanic Niño Index (ONI). https://ggweather.com/enso/oni.htm