Impactos ambientales de sistemas de energía solar fotovoltaica: una revisión de análisis de ciclo de vida y otros estudios.

Environmental impacts of solar photovoltaic systems: a revision from Life Cycle Assessments and other studies

Contenido principal del artículo

María Carolina Romero Pereira
Alba Sánchez Coria

Resumen

Según el séptimo objetivo de desarrollo sostenible (ODS) concluido por la Organización de las Naciones Unidas (ONU), la energía deberá ser limpia y accesible para todos en las próximas décadas. La energía limpia se utiliza a menudo como sinónimo de energía renovable (ER), sostenible o verde, palabras que se asocian con un concepto de tecnologías de bajo impacto ambiental (IA). Sin embargo, las ERs también tienen asociados IAs negativos, que pueden identificarse y evaluarse mediante instrumentos como la Evaluación de Impactos Ambientales (EIA) o el Análisis de ciclo de vida (ACV). Este artículo se centra en la revisión de los IAs documentados en diferentes ACV para sistemas de energía solar fotovoltaica (SEPV), el tipo más común de ERs modernas para satisfacer la demanda energética a nivel mundial.


Aunque diferentes estudios de ACV incluyen varias categorías ambientales de evaluación, para el análisis se seleccionaron 5 categorías, potencial de calentamiento global (GWP, por sus siglas en inglés), uso del suelo, pérdida de biodiversidad, salud humana y generación de residuos.


Los resultados muestran que los IAs de los SEPV documentados en ACVs dependen no solo de la tecnología, el contexto y la escala del proyecto, sino también del objetivo y alcance de cada estudio. Aun así, este artículo recoge valores orientativos para el GWP, el uso de suelo y los accidentes mortales de aves relacionados con SEPV. Además, la investigación revela la necesidad de enfoques complementarios como EIA o estudios de toxicidad para poder dimensionar impactos acerca de pérdida de biodiversidad y daños a la salud humana, así mismo concluye la falta de un sistema de gestión de residuos adecuado para las miles de toneladas que generarán estos sistemas a futuro.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Biografía del autor/a (VER)

Alba Sánchez Coria, Autor

Estudiante de ingeniería ambiental Universidad Técnica de Darmstadt, Alemania.

Estudiante de pasantía de ingeniería ambiental, Escuela Colombiana de Ingeniería Julio Garavito

Referencias (VER)

Alsema, E.; de Wild-Scholten, M. J. (2007). Keep it clean. Reducing environmental impacts from solar PV. Renewable Energy World, pp. 96-103.

Anak John, C.; See Tan, L.; Tan, J.; Loo Kiew, P.; Mohd Shariff, A.; Abdul Halim, H. N. (2021). Selection of Renewable Energy in Rural Are Via Life Cycle Assessment-Analytical Hierarchy Process (LCA.AHP): A Case Study of tatau, Sarawak. Sustainability, 13(21), 1880. DOI: 10.3390/su132111880.

Antonanzas, J.; Quinn, J. C. (2021). Net environmental impact of the PV industry from 2000-2025. Journal of Cleaner Production, 311, 127791. DOI: 10.1016/j.jclepro.2021.127791

Balfour, J. R.; Shaw, M.; Bremer Nash, N. (2011). Introduction to Photovoltaic System Design. Burlington, Jones & Bartlett Publishers, pp. 2-6.

Bakhiyi, B.; Labrèche, F.; Zayed, J. (2014). The photovoltaic industry on the path to a sustainable future - environmental and occupational health issues. Environmental International, 73, pp. 224-234. DOI: 10.1016/j.envint.2014.07.023

Chowdhury, Md. S.; Rahman, K. S.; Chowdhury, T.; Nuthammachot, N.; Techato, K.; Akhtaruzzaman; Tiong, S. K.; Kamaruzzaman, S.; Nowshad, A. (2020): An overview of solar photovoltaic panels’ end-of-life material recycling. Energy Strategy Reviews, 27, pp. 100431. DOI: 10.1016/j.esr.2019.100431.

Cornejo, F.; Janssen, M.; Gaudrealt, C.; Samson, R. (2005): Using Life Cycle Assessment (LCA) as a Tool to Enhance Environmental Impact Assessment (EIA). Chemical Engineering Transaction, 7, pp. 521- 528.

Da Pimentel Silva, G. D.; Branco, D. A. C. (2018). Is floating photovoltaic better than conventional photovoltaic? Assessing environmental impacts. Impact Assessment and Project Appraisal, 36 (5), pp. 390-400. DOI: 10.1080/14615517.2018.1477498.

Dhar, A.; Naeth, M. A.; Jennings, P. D.; El-Din, M. G. (2020). Perspectives on environmental impacts and a land reclamation strategyfor solar and wind energy systems. Science of the Total Environment, 718, pp. 134602. DOI: 10.1016/j.scitotenv.2019.134602

Domínguez, A.; Geyer, R. (2017). Photovoltaic waste assessment in Mexico. Resource, Conservation and Recycling, 127, pp. 29-41. DOI: 10.1016/j.resconrec.2017.08.013

Dubey, S.; Jadhav, N. Y.; Zakirova, B. (2013). Socio-Economic and Environmental Impacts of Silicon Based Photovoltaic (PV) Technologies. Energy Procedia, 33, pp. 322-334. DOI: 10.1016/j.egypro.2013.05.073.

Dupraz, C.; Marrou, H.; Talbot, G.; Dufour, L.; Nogier, A.; Ferard, Y. (2011). Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes. Renewable Energy, 36 (10), pp. 2725-2732. DOI: 10.1016/j.renene.2011.03.005.

Edenhofer, O.; Pichs Madruga, R.; Sokona, Y. (2012): Renewable energy sources and climate change mitigation. Special report of the Intergovernmental Panel on Climate Change, New York, Cambridge University Press.

European Commission (2012): Waste from Electrical and Electronic Equipment (WEEE). [Online]. Available at: https://ec.europa.eu/environment/topics/waste-and-recycling/waste-electrical-and-electronic-equipment-weee_de.

Fraunhofer Institute for Solar Energy Systems (2021). Photovoltaics report. [Online]. Available at: https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf

Food and Agriculture Organization of the UN. FAO (2014). The Water-energy-Food Nexus. A new approach in support of food security and sustainable agriculture.

Forti, V.; Baldé, C.P.; Kuehr, R.; Bel, G. (2020). The Global E-waste Monitor 2020: Quantities, flows and the circular economy potential. United Nations University (UNU)/United Nations Institute for Training and Research (UNITAR) – co-hosted SCYCLE Programme, International Telecommunication Union (ITU) & International Solid Waste Association (ISWA), Bonn/Geneva/Rotterdam.

Fthenakis, V.; Kim, H. C.; Frischknecht, R.; Raugei, M.; Sinha, P.; Stucki, M. (2011). Life cycle inventories and life cycle assessment of photovoltaic systems, New York, International Energy Agency.

Fthenakis, V.; Kim, H. C. (2009). Land use and electricity generation: A life-cycle analysis. Renewable and Sustainable Energy Reviews, 13 (6-7), pp. 1465-1474. DOI: 10.1016/j.rser.2008.09.017.

Hernandez, R. R.; Murphy-Mariscal, M. I.; Easter, S. B.; Maestre, F. T.; Tavassoli, M.; Allen, E. B.; Barrows, C. W.; Belnap, J.; Ochoa-Hueso, R.; Ravi, S.; Allen, M. F. (2014). Environmental impacts of utility-scale solar energy. Renewable and Sustainable Energy Reviews, 29, pp. 766-779. DOI: 10.1016/j.rser.2013.08.041

Hong, J.; Chen, W.; Qi, C.;Ye, L.; Xu, C. (2016). Life cycle assessment of multicristalline silicon photovoltaic cell production in China. Solar Energy, 133, pp. 283-293. DOI: 10.1016/j.solener.2016.04.013

International Energy Agency (IEA). 2020. World energy outlook 2020. Online. Available at: https://iea.blob.core.windows.net/assets/a72d8abf-de08-4385-8711-b8a062d6124a/WEO2020.pdf

IEA (2021). Renewable Power. International Energy Agency. Available at: https://www.iea.org/reports/renewable-power

IEA, IRENA, UNSD, WBG, WHO (2019). Tracking SDG 7: The Energy progress report, Washington DC.

IFO (2015). Utility-Scale Solar Photovoltaic Power Plants. [Online]. Available at: https://www.ifc.org/wps/wcm/connect/a1b3dbd3-983e-4ee3-a67b-cdc29ef900cb/IFC+Solar+Report_Web+_08+05.pdf?MOD=AJPERES&CVID=kZePDPG

IRENA (2019), Future of Solar Photovoltaic: Deployment, investment, technology, grid integration and socio-economic aspects (A Global Energy Transformation: paper), International Renewable Energy Agency, Abu Dhabi. Available at: https://Irena.org/publications/2019/Nov/Future-of-Solar-Photovoltaic

IUCN ROWA (2019). Nexus comprehensive methodological framework: the MENA Region Initiative as a model of Nexus Approach and Renewable Energy Technologies (MINARET). Amman, Jordan: IUCN.

Kafka, J.; Miller, M.A. (2020). The dual angle solar harvest (DASH) method: An alternative method for organizing large solar panel arrays that optimizes incident solar energy in conjunction with land use. Renewable Energy, 155, pp. 531-546. DOI: 10.1016/j.renene.2020.03.025.

Kim, B.; Lee, J.; Kim, K.; Hur, T. (2013). Evaluation of the environmental performance of sc-Si and mc-SiPV systems in Korea. Solar Energy, pp, pp. 100-114. DOI: 10.1016/j.solener.2013.10.038

Kim, J. Y.; Koide, D.; Ishihama, F.; Kadoya, T.; Nishihiro, J. (2021). Current site planning of medium to large solar power systems acceleratesthe loss of the remaining semi-natural and agricultural habitats. Science of the Total Environment, 779, 146475. DOI: 10.1016/j.scitotenv.2021.146475.

Kosciuch, K.; Riser-Espinoza, D.; Gerringer, M.; Erickson, W. (2020). A summary of bird mortality at photovoltaic utility scale solar facilities in the Southwestern U.S. PLoS ONE, 15 (4). DOI: 10.1371/journal.pone.0232034.

Loss, S. R. (2016). Avian interactions with energy infrastructure in the context of other anthropogenic threats. The Condor, 118 (2), pp. 424-432. DOI: 10.1650/CONDOR-16-12.1.

Loss, S. R.; Will, T.; Marra, P. P. (2015). Direct Mortality of Birds from Anthropogenic Causes. Annual Reviw of Ecology, Evolution and Systatics, 46 (1), pp. 99-120. DOI: 10.1146/annurev-ecolsys-112414-054133.

Ludin, N. A.; Affandi, N. A. A.; Purvis-Roberts, K.; Ahmad, A.; Ibrahim, M. A.; Sophian, K.; Jusoh, S. (2021). Environmental Impact and Levelised Cost of Energy Analysis of Solar Photovoltaic Systems in Selected Asia Pacific Region: A Cradle-to-Grave Approach. Energy, 13(1), pp. 396. DOI: 10.3390/su13010396

Magrassi, F.; Rocco, E.; Barberis, S.; Gallo, M.; Del Borghi, A. (2018). Hybrid solar poewr system versus photovoltaic plant: A comparative analysis though a life cycle approach. Renewable Energy, 130, pp. 290-304. DOI: 10.1016/j.renene.2018.06.072.

Mahmoudi, S.; Huda, N.; Behnia, M. (2021). Critical assessment of renewable energy waste generation in OECD countries: Decommissioned PV panels. Resources, Conservation and Recycling 164, pp. 105145. DOI: 10.1016/j.resconrec.2020.105145.

Mérida García, A; Gallagher, J.; McNabola, A.; Camacho Poyato, E.; Montesinos Barrios, P.; Rodríguez Díaz, J.A. (2019). Comparing the environmental and economic impacts of on- or off-grid solar photovoltaics with traditional energy sources for rural irrigation systems. Renewable Energy, 140, pp. 895-904. DOI: 10.1016/j.renene.2019.03.122.

Muteri, V.; Cellura, M.; Curto, D.; Franzitta, V.; Longo, S.; Mistretta, M.; Parisi, M. L. (2020). Review on Life Cycle Assessment of Soar Photovoltaic Panels. Eergies, 13 (1), pp.252. DOI: 10.3390/en13010252

Müller, A.; Friedrich, L.; Reichel, C.; Herceg, S.; Mittag, M.; Neuhaus, D. H. (2021). A comparative life cycle assessment of silicon PV modules: Impact of module design, manufacturing location and inventory. Solar energy Materials and Solar Cells, 230, 111277. DOI: 10.1016/j.solmat.2021.111277

North Carolina State University (2017). Health and Safety Impacts of Solar Photovoltaics. [Online]. Available at: https://nccleantech.ncsu.edu/wp-content/uploads/2018/10/Health-and-Safety-Impacts-of-Solar-Photovoltaics-2017_white-paper.pdf

Ong, P.; Campbell, C.; Denholm, P.; Margolis, R.; Heath, G. (2013). Land-Use Requirements for Solar Power Plants in the United States. Available at: https://www.nrel.gov/docs/fy13osti/56290.pdf

Peng, J.; Lu, L.; Yang, H.; (2013). Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems. Renewable and Sustainable Energy Reviews, 19, pp. 255-274. DOI: 10.1016/j.rser.2012.11.035.

Rao, H.; Gemechu, E.; Thakur, U.; Shankar, K.; Kumar, A. (2021). Life cycle assessment of high-performance monocrystalline titanium dioxide nanorod-based perovskite solar cells. Solar Energy Materials and Solar Cells, 230, 111288. DOI: 10.1016/j.solmat.2021.111288.

Rix, A. J.; Steyl, J. D. T.; Rudman, J.; Terblanche, U.; van Niekerk, J. L. (2015). First Solar´s CdTe technology - performance, life cycle, health and safety assessment. [Online]. Available online: https://www.firstsolar.com/-/media/First-Solar/Sustainability-Documents/Sustainability-Peer-Reviews/CRSES2015_06_First-Solar-CdTe-Module-Technology-Review-FINAL.ashx

Robinson, S.; Meindl, G. (2019). Potential for leaching of heavy metals and metalloids from crystalline silicon photovoltaic systems. Journal of Natural Resources and Development, 9, pp. 19-24. DOI: 10.5027/jnrd.v9i0.02.

Romero and Higinio (2021). Energías renovables no convencionales para satisfacer

la demanda energética: análisis de tendencias entre 1990 y 2018. Revista EIA, 18(36), pp.1-21. DOI: 10.24050/reia.v18i36-1513

Schumacher, K. (2019). Approval procedures for large-scale renewable energy installations: Comparison of national legal frameworks in Japan, New Zealand, the EUand the US. Energy Policy, 129, pp. 139-152. DOI: 10.1016/j.enpol.2019.02.013

Sinha, P.; Heath, G.; Wade, A.; Komoto, K. (2019). Human Health Risk Assessment Methods for PV (Part 2: Breakage Risks). U.S. Department of Energy. DOI: 10.2172/1603943

Stamford, L.; Azapagic, A. (2018). Environmental Impacts of Photovoltaics: The Effects of Technological Improvements and Transfer of Manufacturing from Europe to China. Energy Technology, 6 (6), pp. 11481160. DOI: 10.1002/ente.201800037.

Tawalbeh, M.; Al-Othman, A.; Kafiah, F.; Abdelsalam, E.; Almomani, F. (2021). Environmental impacts of solar photovoltaic systems: A critical review of recent progress and future outlook. Science of the Environment, 759. DOI: 10.1016/j.scitotenv.2020.143528.

U.S. Department of energy (2021a). Solar Futures Study. [Online]. Available at: https://www.energy.gov/eere/solar/solar-futures-study

Union of Concerned Scientists (2013). Environmental Impacts of Wind Power. [Online] Available at: https://www.ucsusa.org/resources/environmental-impacts-wind-power.

United Nations (2021). Sustainable Development Goals. Ensure access to affordable, reliable, sustainable and modern energy. [Online] Available at: www.un.org/sustainabledevelopment/energy/.

United Nations Environmental Programme (2015). Waste Crimes, Waste Risks: Gaps and Challenges in the Waste Sector. [Online]. Available at: https://wedocs.unep.org/handle/20.500.11822/9648.

United Nations Environment Programme (2018). Assessing Environmental Impact – A Global Reviews of Legislation. [Online]. Available online: https://europa.eu/capacity4dev/unep/documents/assessing-environmental-impacts-global-review-legislation

United Nations Statistics Division (2021): Ensure access to affordable, reliable, sustainable and modern energy for all. [Online]. Available at: https://unstats.un.org/sdgs/report/2019/goal-07/.

Visser, E.; Perold, V.; Ralston-Paton, S.; Cardenal, A.C.; Ryan; P. G. (2019). Assessing the impacts of a utility-scale photovoltaic solar energy facility on birds in the Northern Cape, South Africa. Renewable Energy, 133, pp. 1285-1294. DOI: 10.1016/j.renene.2018.08.106

World Economic Forum (2019). A New Circular Vision for Electronics. Time for a Global Reboot. [Online]. Available at: https://www3.weforum.org/docs/WEF_A_New_Circular_Vision_for_Electronics.pdf

Artículos similares

También puede {advancedSearchLink} para este artículo.