Modelo estadístico para el análisis de variables negativas con aplicación a pruebas de contracción en concreto

Statistical model for analizing negative variables with application to compression test on concrete

Contenido principal del artículo

Olga Usuga
Carmen Patiño Rodríguez
Freddy Hernández Barajas
Amylkar Urrea Montoya

Resumen

En algunas áreas de conocimiento se pueden presentar fenómenos que son representados por variables aleatorias negativas (ℝ-) ; contar con un modelo estadístico es crucial para representar esos fenómenos y explicarlos en función de otras variables auxiliares. En este trabajo se propone un modelo de regresión para el análisis de variables aleatorias negativas tomando como distribución para la variable respuesta la distribución Weibull reflejada. En este artículo reportamos el paquete RelDists creado en el lenguaje de programación R para facilitar el uso del modelo de regresión propuesto. Por medio de un estudio de simulación Monte Carlo se exploró el desempeño del proceso de estimación de parámetros. En el estudio de simulación se consideraron dos casos: sin covariables y con covariables. El primer caso se refiere a la situación en la cual sólo se tiene la variable respuesta y con ella se deben estimar los parámetros de la distribución. En el segundo caso se tiene la variable respuesta y variables explicativas que en conjunto se usan para estimar los parámetros del modelo de regresión. Adicionalmente, en el estudio de simulación se consideraron datos censurados y no censurados. Del estudio se encontró que el proceso de estimación logra estimar bien los parámetros del modelo a medida que el tamaño de la muestra aumenta y que el porcentaje de censura disminuye. En el artículo se muestra una aplicación del modelo propuesto usando datos experimentales provenientes de una prueba de contracción con probetas de concreto. En la aplicación se construyó un modelo para explicar la contracción de las probetas en función del tiempo. El modelo de regresión para variables aleatorias negativa y el paquete RelDists pueden ser usados por comunidades académicas, científicas y de negocios para el desarrollo de análisis de confiabilidad.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

Akaike, H. (1983). Information measures and model selection. Int Stat Inst, 44, 277–291.

Al Abbasi, J. N., Risan, H. K., & Resen, I. A. (2018). Application of Kumaraswamy Extreme Values Distributions to Earthquake Magnitudes in Iraq and Conterminous Regions. International Journal of Applied Engineering Research, 13(11), 8971–8980.

Ali, M. M., & Woo, J. (2006). Skew-symmetric reflected distributions. Soochow Journal of Mathematics, 32(2), 233–240. https://doi.org/10.1080/01966324.2008.10737716

Almalki, S. J., & Nadarajah, S. (2014). Modifications of the Weibull distribution: A review. Reliability Engineering & System Safety, 124(4), 32–55. https://doi.org/https://doi.org/10.1016/j.ress.2013.11.010

Balakrishnan, N., & Kocherlakota, S. (1985). On the double Weibull distribution: order statistics and estimation. Sankhya: The Indian Journal of Statistics, Series B, 47(2), 161–178.

Barreto-Souza, W., Santos, A. H. S., & Cordeiro, G. M. (2010). The beta generalized exponential distribution. Journal of Statistical Computation and Simulation, 80(2), 159–172. https://doi.org/10.1080/00949650802552402

Caron, R., Sinha, D., Dey, D., & Polpo, A. (2017). Categorical data analysis using a skewed Weibull regression model. In arXiv (Vol. 20, Issue 3, pp. 176–193). Multidisciplinary Digital Publishing Institute. https://doi.org/https://doi.org/10.3390/e20030176

Cohen, A. C. (1975). Multi-censored sampling in the three parameter Weibull distribution. Technometrics, 17(3), 347–351. https://doi.org/https://doi.org/10.2307/1268072

Cohen, A. C. (2016). Truncated and censored samples: theory and applications. CRC press.

Cohen, C. A., & Whitten, B. (1982). Modified maximum likelihood and modified moment estimators for the three-parameter Weibull distribution. Communications in Statistics-Theory and Methods, 11(23), 2631–2656. https://doi.org/https://doi.org/10.1080/03610928208828412

Dunn, P. K., & Smyth, G. K. (1996). Randomized quantile residuals. Journal of Computational and Graphical Statistics, 5(3), 236–244. https://doi.org/https://doi.org/10.2307/1390802

Gibbons, D. I., & Vance, L. C. (1983). Estimators for the 2-parameter Weibull distribution with progressively censored samples. IEEE Transactions on Reliability, 32(1), 95–99. https://doi.org/10.1109/TR.1983.5221484

Guure, C. B., & Ibrahim, N. A. (2012). Bayesian analysis of the survival function and failure rate of Weibull distribution with censored data. Mathematical Problems in Engineering, 2012. https://doi.org/https://doi.org/10.1155/2012/329489

Guure, C. B., & Ibrahim, N. A. (2013). Methods for estimating the 2-parameter Weibull distribution with type-I censored data. Research Journal of Applied Sciences, Engineering and Technology, 5(3), 689–694. https://doi.org/10.19026/rjaset.5.5010

Hernández, B. F., Cano, B. U., & Caicedo, E. A. C. (2021). Modelos GAMLSS para analizar el grado secado de calcio dihidratado. Revista EIA, 18(35), 1–13. https://doi.org/https://doi.org/10.24050/reia.v18i35.1439

Huang, H., Garcia, R., Huang, S.-S., Guadagnini, M., & Pilakoutas, K. (2019). A practical creep model for concrete elements under eccentric compression. Materials and Structures, 52(6), 1–18. https://doi.org/10.1617/s11527-019-1432-z

Kalsoom, U., Nasir, W., & Syed, A. (2019). On estimation of reflected Weibull distribution using bayesian analysis under informative prior. 15th Islamic Countries Conference on Statistical Sciences (ICCS-15), 49.

Kim, C., Jung, J., & Chung, Y. (2011). Bayesian estimation for the exponentiated Weibull model under Type II progressive censoring. Statistical Papers, 52(1), 53–70. https://doi.org/https://doi.org/10.1007/s00362-009-0203-2

Kim, J. S., & Yum, B.-J. (2008). Selection between Weibull and lognormal distributions: A comparative simulation study. Computational Statistics & Data Analysis, 53(2), 477–485. https://doi.org/https://doi.org/10.1016/j.csda.2008.08.012

Lai, C.-D. (2014). Generalized weibull distributions. Springer.

Lee, C., Famoye, F., & Olumolade, O. (2007). Beta-Weibull distribution: some properties and applications to censored data. Journal of Modern Applied Statistical Methods, 6(1), 173–186. https://doi.org/DOI: 10.22237/jmasm/1177992960

Meeker, W. Q., & Escobar, L. A. (2014). Statistical methods for reliability data. John Wiley & Sons.

Modarres, M., Kaminskiy, M. P., & Krivtsov, V. (2016). Reliability engineering and risk analysis: a practical guide. CRC press.

Morris, T. P., White, I. R., & Crowther, M. J. (2019). Using simulation studies to evaluate statistical methods. Statistics in Medicine, 38(11), 2074–2102. https://doi.org/https://doi.org/10.1002/sim.8086

Nagatsuka, H., Kamakura, T., & Balakrishnan, N. (2013). A consistent method of estimation for the three-parameter Weibull distribution. Computational Statistics & Data Analysis, 58(1), 210–226. https://doi.org/https://doi.org/10.1016/j.csda.2012.09.005

Nagelkerke, N. J. D. (1991). A Note on a General Definition of the Coefficient of Determination. Biometrika, 78(3), 691–692. https://doi.org/https://doi.org/10.1093/biomet/78.3.691

Odell, P. M., Anderson, K. M., & D’Agostino, R. B. (1992). Maximum likelihood estimation for interval-censored data using a Weibull-based accelerated failure time model. Biometrics, 48(3), 951–959.

Orjubin, G. (2007). Maximum field inside a reverberation chamber modeled by the generalized extreme value distribution. IEEE Transactions on Electromagnetic Compatibility, 49(1), 104–113. https://doi.org/10.1109/TEMC.2006.888172

Phadnis, M. A., Sharma, P., Thewarapperuma, N., & Chalise, P. (2020). Assessing accuracy of Weibull shape parameter estimate from historical studies for subsequent sample size calculation in clinical trials with time-to-event outcome. Contemporary Clinical Trials Communications, 17(1). https://doi.org/10.1016/j.conctc.2020.100548

R Core Team. (2021). R: A Language and Environment for Statistical Computing. https://www.r-project.org/

Regal, R. R., & Larntz, K. (1978). Likelihood methods for testing group problem solving models with censored data. Psychometrika, 43(3), 353–366. https://doi.org/https://doi.org/10.1007/BF02293645

Rigby, R. A., & Stasinopoulos, D. M. (2005). Generalized additive models for location, scale and shape. Journal of the Royal Statistical Society: Series C (Applied Statistics), 54(3), 507–554. https://doi.org/https://doi.org/10.1111/j.1467-9876.2005.00510.x

Ross, M. S. (2012). Simulation. Elsevier.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464.

Stacy, E. W. (1962). A generalization of the gamma distribution. The Annals of Mathematical Statistics, 33(3), 1187–1192.

Stasinopoulos, M. D., Rigby, R. A., Heller, G. Z., Voudouris, V., & Bastiani, F. (2017). Flexible Regression and Smoothing Using GAMLSS in R. CRC Press.

Wei, Z., Start, M., Hamilton, J., & Luo, L. (2016). A unified framework for representing product validation testing methods and conducting reliability analysis. SAE International Journal of Materials and Manufacturing, 9(2), 303–314. https://doi.org/https://doi.org/10.4271/2016-01-0269

Xie, M., & Lai, C. D. (1996). Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function. Reliability Engineering & System Safety, 52(1), 87–93. https://doi.org/https://doi.org/10.1016/0951-8320(95)00149-2

Zhang, T., & Xie, M. (2007). Failure data analysis with extended Weibull distribution. Communications in Statistics—Simulation and Computation®, 36(3), 579–592. https://doi.org/https://doi.org/10.1080/03610910701236081

Artículos similares

También puede {advancedSearchLink} para este artículo.