Modelos de series temporales para pronóstico de la demanda eléctrica del sector de explotación de minas y canteras en Colombia
Time series forecasting for Colombian mining and quarrying electricity demand
Contenido principal del artículo
Resumen
Pronosticar la demanda eléctrica es de suma importancia para la planeación estratégica de una nación. La literatura ofrece múltiples acercamientos para el desarrollo de modelos de pronóstico enfocados principalmente en la demanda nacional agregada, dejando de lado los análisis sectoriales, en particular a los sectores no residenciales. En este artículo, utilizando la metodología de análisis de Series de Tiempo, se ajustan, validan y comparan tres diferentes modelos para pronosticar la demanda eléctrica del sector minas y canteras, uno de los más representativos en el consumo eléctrico colombiano. Los modelos ajustados incluyen un modelo de componentes aditivo, un SARIMA y un Holt Wiatednters. Los resultados indican que el modelo que presenta un menor error de pronóstico es el modelo Holt Winters.
Descargas
Detalles del artículo
Referencias (VER)
Azadeh, A., Ghaderi, S. F. and Sohrabkhani, S. (2008) ‘A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran’, Energy Policy, 36(7), pp. 2637–2644. https://doi.org/10.1016/j.enpol.2008.02.035.
Barreto, C. and Campo, J. (2012) ‘Relación a largo plazo entre consumo de energía y PIB en América Latina : Una evaluación empírica con datos panel using panel data’, Ecos de Economia, (35), pp. 73–89.
Box, G. E. P. and Jenkins, G. M. (1976) Time series analysis: forecasting and control. Revised Ed. San Francisco : Holden-Day.
Deb, C. et al. (2017) ‘A review on time series forecasting techniques for building energy consumption’, Renewable and Sustainable Energy Reviews. Elsevier Ltd, 74(February), pp. 902–924. https://doi.org/10.1016/j.rser.2017.02.085.
EEA (2017) Final energy consumption of electricity by sector, Final energy consumption by sector and fuel. Available at: https://www.eea.europa.eu/data-and-maps/indicators/final-energy-consumption-by-sector-9/assessment-1.
Franco, C. J., Velásquez, J. D. and Olaya, I. (2008) ‘Caracterización de la demanda mensual de electricidad en Colombia usando un modelo de componentes no observables’, Cuadernos de Administración, 21(36), pp. 221–235. http://www.scielo.org.co/pdf/cadm/v21n36/v21n36a10.pdf.
Garzón Medina, D. O. and Marulanda García, G. A. (2017) ‘Estimación del consumo eléctrico colombiano en el corto y largo plazo empleando regresión multivariable y series temporales’, AVANCES Investigación en Ingeniería, 14, p. 155. https://doi.org/10.18041/1794-4953/avances.1.1294.
Gil, D. (2016) ‘Pronóstico de la demanda mensual de electricidad con series de tiempo’, Revista EIA, 13(26), pp. 111–120. https://doi.org/10.24050/reia.v13i26.749.
Goodarzi, S., Perera, H. N. and Bunn, D. (2019) ‘The impact of renewable energy forecast errors on imbalance volumes and electricity spot prices’, Energy Policy. Elsevier Ltd, 134(March), pp. 110827. https://doi.org/10.1016/j.enpol.2019.06.035.
Gulay, E. (2019) ‘Forecasting the Total Electricity Production in South Africa : Comparative Analysis to Improve the Predictive Modelling Accuracy’, 7(November 2018), pp. 88–110. https://doi.org/10.3934/energy.2019.1.88.
Holt, C. C. (1957) Forecasting seasonals and trends by exponentially weighted moving averages. Pittsburgh, Pa.: Carnegie Institute of Technology, Graduate school of Industrial Administration.
IEA (2017) Electricity information overview, IEA Statistics. https://www.iea.org/publications/freepublications/publication/ElectricityInformation2017Overview.pdf.
Islam, M. A. et al. (2020) ‘Energy demand forecasting’, in Energy for Sustainable Development. Elsevier, pp. 105–123. https://doi.org/10.1016/B978-0-12-814645-3.00005-5.
Jimenez, J. et al. (2019) ‘Multivariate Statistical Analysis based Methodology for Long-Term Demand Forecasting’, IEEE Latin America Transactions, 17(01), pp. 93–101. https://doi.org/10.1109/TLA.2019.8826700.
Jiménez, J., Donado, K. and Quintero, C. G. (2017) ‘A methodology for short-term load forecasting’, IEEE Latin America Transactions, 15(3), pp. 400–407. https://doi.org/10.1109/TLA.2017.7867168.
Kubli, M., Loock, M. and Wüstenhagen, R. (2018) ‘The flexible prosumer: Measuring the willingness to co-create distributed flexibility’, Energy Policy, 114(August 2017), pp. 540–548. https://doi.org/10.1016/j.enpol.2017.12.044.
Mohandes, M. (2002) ‘Support vector machines for short-term electrical load forecasting’, International Journal of Energy Research, 26(4), pp. 335–345. doi: 10.1002/er.787.
Nunes Da Silva, I. and Carli Moreira De Andrade, L. (2016) ‘Efficient neurofuzzy model to very short-term load forecasting, IEEE Latin America Transactions, 14(2), pp. 721–728. https://doi.org/10.1109/TLA.2016.7437215.
Percy, S. D., Aldeen, M. and Berry, A. (2018) ‘Residential demand forecasting with solar-battery systems: A survey-less approach’, IEEE Transactions on Sustainable Energy. IEEE, 9(4), pp. 1499–1507. https://doi.org/10.1109/TSTE.2018.2791982.
Pérez Osorno, M. and Betancur Vargas, A. (2017) ‘Gestión del sector minero en el ámbito nacional y su relación entre el accionar gubernamental y empresarial’, Recerca. Revista de pensament i anàlisi., 0(20), pp. 157–184. https://doi.org/10.6035/Recerca.2017.20.8.
R Core Team (2017) ‘R: A Language and Environment for Statistical Computing’. Vienna, Austria: R Foundation for Statistical Computing. https://www.r-project.org/.
Rahman, A. and Ahmar, A. S. (2017) ‘Forecasting of primary energy consumption data in the United States: A comparison between ARIMA and Holter-Winters models’, in AIP Conference Proceedings, p. 020163. https://doi.org/10.1063/1.5002357.
Rocha, H. R. O. et al. (2018) ‘Forecast of distributed electrical generation system capacity based on seasonal micro generators using ELM and PSO’, IEEE Latin America Transactions, 16(4), pp. 1136–1141. https://doi.org/10.1109/TLA.2018.8362148.
Romero, F. T., Hernandez, J. D. C. J. and Lopez, W. G. (2011) ‘Predicting electricity consumption using neural networks’, IEEE Latin America Transactions, 9(7), pp. 1066–1072. https://doi.org/10.1109/TLA.2011.6129704.
Rueda, V. M., Velásquez, J. D. and Franco, C. J. (2011) ‘Avances recientes en la predicción de la demanda de electricidad usando modelos no lineales’, Dyna, 167, pp. 36–43. http://www.scielo.org.co/pdf/dyna/v78n167/a04v78n167.pdf.
Shyh-Jier Huang and Kuang-Rong Shih (2003) ‘Short-term load forecasting via ARMA model identification including non-gaussian process considerations’, IEEE Transactions on Power Systems. IEEE, 18(2), pp. 673–679. https://doi.org/10.1109/tpwrs.2003.811010.
Stoffer, D. (2012) ‘astsa: Applied Statistical Time Series Analysis’.
SUI (2016) Sistema Único de Información de Servicios Públicos (SUI), Consolidado Energía. Available at: http://reportes.sui.gov.co/fabricaReportes/frameSet.jsp?idreporte=ele_com_094.
Velásquez, J. D., Franco, C. J. and García, H. A. (2009) ‘Un modelo no lineal para la predicción de la demanda mensual de electricidad en colombia’, Estudios Gerenciales, 25(112), pp. 37–54. https://doi.org/10.1016/S0123-5923(09)70079-8.
Wang, Y. et al. (2012) ‘Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: A case study of China’, Energy Policy. (Special Section: Frontiers of Sustainability), 48, pp. 284–294. https://doi.org/10.1016/j.enpol.2012.05.026.
Winters, P. R. (1960) ‘Forecasting Sales by Exponentially Weighted Moving Averages’, Management Science, 6(3), pp. 324–342. https://doi.org/10.1287/mnsc.6.3.324.
XM (2018) Información inteligente. http://informacioninteligente10.xm.com.co/demanda/paginas/default.aspx.
Yang, Y. et al. (2016) ‘Modelling a combined method based on ANFIS and neural network improved by DE algorithm: A case study for short-term electricity demand forecasting’, Applied Soft Computing, 49, pp. 663–675. https://doi.org/10.1016/j.asoc.2016.07.053.