Simulación del proceso de producción de L-fenilalanina por la ruta fermentativa utilizando el simulador SuperPro Designer®
Simulation of the L-phenylalanine production process by the fermentative route using SuperPro Designer® simulator
Contenido principal del artículo
Resumen
Descargas
Detalles del artículo
Referencias (VER)
Aguiar, A. C. d.; Osorio-Tobón, J. F.; Silva, L. P. S.; Barbero, G. F.; Martínez, J. (2018). Economic analysis of oleoresin production from malagueta peppers (Capsicum frutescens) by supercritical fluid extraction. The Journal of Supercritical Fluids, 133, pp. 86-93. https://dx.doi.org/10.1016/j.supflu. 2017.09.031.
Auli, N. A.; Sakinah, M.; Bakri, A. M. M. A.; Kamarudin, H.; Norazian, M. N. (2013). Simulation Of Xylitol Production: A Review. Australian Journal of Basic and Applied Sciences, 7(5), pp. 366-372.
Baca, G. (2010). Evaluación de proyectos, 6ta ed., México D.F., McGraw-Hill/Interamericana Editores, S.A. de C.V, pp. 56-94.
Báez-Viveros, J. L.; Flores, N., Juárez, K.; Castillo-España, P.; Bolivar, F.; Gosset, G. (2007). Metabolic transcription analysis of engineered Escherichia coli strains that overproduce L-phenylalanine. Microbial Cell Factories, 6(1), pp. 1-20. https://dx.doi.org/10.1186/1475-2859-6-30.
BIOTOL. (1997). Biotechnological Innovations in Chemical Synthesis. Oxford, Butterworth-Heinemann, pp. 253-262.
Bongaerts, J.; Krämer, M.; Müller, U.; Raeven, L.; Wubbolts, M. (2001). Metabolic Engineering for Microbial Production of Aromatic Amino Acids and Derived Compounds. Metabolic Engineering, 3(4), pp. 289-300. https://dx.doi.org/10.1006/mben.2001.0196.
Doroshenko, V. G.; Livshits, V. A.; Airich, L. G.; Shmagina, I. S.; Savrasova, E. A.; Ovsienko, M. V.; Mashko, S. V. (2015). Metabolic Engineering of Escherichia coli for the Production of Phenylalanine and Related Compounds. Applied Biochemistry and Microbiology, 51(7), pp. 733-750. https://dx.doi.org/10.1134/s0003683815070017.
FINAR. (2019). Price List 2019-20, Gujarat, Finar Foundation,
García, J. M. (2008). La simulación de procesos en ingeniería química. Revista Investigación Científica, 4(2), pp. 1-9.
Gerigk, M.; Bujnicki, R.; Ganpo-Nkwenkwa, E.; Bongaerts, J.; Sprenger, G.; Takors, R. (2002). Process Control for Enhanced L-Phenylalanine Production Using Different Recombinant Escherichia coli Strains. Biotechnology and Bioengineering, 80(7), pp. 746-754. https://dx.doi.org/10.1002/bit.10428.
Gerigk, M. R.; Maass, D.; Kreutzer, A.; Sprenger, G.; Bongaerts, J.; Wubbolts, M.; Takors, R. (2002). Enhanced pilot-scale fed-batch L-phenylalanine production with recombinant Escherichia coli by fully integrated reactive extraction. Bioprocess Biosyst. Eng., 25, pp. 43–52. https://dx.doi.org/0.1007/s00449-002-0280-2.
Heinzle, E., Biwer, A. P., Cooney, C. L. (2006). Development of Sustainable Bioprocesses Modeling and Assessment. West Sussex, John Wiley & Sons, pp. 62-78.
Intelligen. (2018). SuperPro Designer® (Version 10.0). Scotch Plains, Intelligen, Inc.
Ito, H.; Sato, K.; Matsui, K.; Sano, K.; Enei, H.; Hirose, Y. (1990). Molecular breeding of a Brevibacterium lactofermentum L-phenylalanine producer using a cloned prephenate dehydratase gene. Appl. Microbiol. Biotechnol., 33, pp. 190-195. https://dx.doi.org/10.1007/BF00176523.
Jenkins, S. (2020). Economic Indicators. Chemical Engineering, 127(2), pp. 56.
Klausner, A. (1985). Building for Success in Phenylalanine. Biotechnology, 3(4), pp. 301-307.
Lee, C. S.; Chong, M. F.; Binner, E.; Gomes, R.; Robinson, J. (2018). Techno-economic assessment of scale-up ofbio-flocculant extraction and production by usingokra as biomass feedstock. Chemical Engineering Research and Design, 132, pp. 358–369. https://dx.doi.org/10.1016/j.cherd.2018.01.050.
Liu, C. H.; Liao, C. C. (1994). Medium optimization for L-phenylalanine production by a tryptophan auxotroph of Corynebacterium glutamicum. Biotechnol. Lett., 16, pp. 801-806.
Liu, Y.; Xu, Y.; Ding, D.; Wen, J.; Zhu, B.; Zhang, D. (2018). Genetic engineering of Escherichia coli to improve L-phenylalanine production. BMC Biotechnology, 18(5), pp. 1-12. https://dx.doi.org/10.1186/s12896-018-0418-1.
Mani, S.; Sundaram, J.; Das, K. C. (2016). Process simulation and modeling: Anaerobic digestion of complex organic matter. Biomass and Bioenergy, 93, pp. 158-167. https://dx.doi.org/10.1016/j.biombioe.2016.07.018.
Matche. (2020). Chemical Equipment Cost. Disponible en www.matche.com. [Consultado 12 de abril 2020].
McEvoy, J. J.; Joyce, A. (1974). Production of L-phenylalanine by DL-phenylalanine hydroxamate-resistant Tyr- mutants of Bacillus subtilis. Mol. Cell. Biochem., 4(3), pp. 191-195. https://dx.doi.org/10.1007/bf01731480.
Meza, J. d. J. (2013). Evaluación financiera de proyectos, 3ra ed., Bogotá, D.C.: Ecoe Ediciones, pp. 133-199.
Miranda, R. d. C.; Mendes, M. F. (2018). Simulation of the Extractive Distillation of Ethanol-Water System: Evaluation of the Influence of Different Solvents. New Materials, Compounds and Applications, 2(2), pp. 152-167.
Molychem. (2019). Price List 2019-2021. Mumbai, Molychem.
Oxford. (2019). Price List 2020-2021 Maharashtra, Oxford Lab Fine Chem LLP.
Peters, M. S., Timmerhaus, K. D., West, R. E. (2003). Plant Design and Economics for Chemical Engineers, 5th ed., New York: McGraw-Hill, pp. 226-275.
Rüffer, N.; Heidersdorf, U.; Kretzers, I.; Sprenger, G. A.; Raeven, L.; Takors, R. (2004). Fully integrated L-phenylalanine separation and concentration using reactive-extraction with liquid-liquid centrifuges in a fed-batch process with E. coli. Bioprocess Biosyst Eng, 26, pp. 239–248. https://dx.doi.org/10.1007/ s00449-004-0354-4.
Sayar, N. A.; Pinar, O.; Kazan, D.; Sayar, A. A. (2019). Bioethanol Production From Turkish Hazelnut Husk Process Design and Economic Evaluation. Waste Biomass Valor, 10, pp. 909–923. https://dx.doi.org/10.1007/s12649-017-0103-y.
Sigma-Aldrich. (2020). L-Phenylalanine PharmaGrade. Disponible en: https://www.sigmaaldrich.com/catalog/product/sigma/p8740?lang=en®ion=CU. [Consultado 27 de abril 2020].
Sinnott, R., Towler, G. (2020). Chemical Engineering Design, 6th ed., Oxford, Butterworth-Heinemann, pp. 275-361.
Sprenger, G. A. (2007). From scratch to value: engineering Escherichia coli wild type cells to the production of L-phenylalanine and other fine chemicals derived from chorismate. Applied Microbiology and Biotechnology, 75(4), pp. 739–749. https://dx.doi.org/10.1007/s00253-007-0931-y.
Sun, Z.; Gao, X.; Zhang, Y.; Gao, C. (2016). Separation and purification of L-phenylalanine from the fermentation broth by electrodialysis. Desalination and Water Treatment, 57(47), pp. 1-7. https://dx.doi.org/10.1080/19443994.2015. 1137082.
Towler, G., Sinnott, R. (2013). Chemical Engineering Design. Principles, Practice and Economics of Plant and Process Design, 2nd ed., Oxford, Butterworth-Heinemann, pp. 389-425.
Vučurović, D. G.; Dodić, S. N.; Popov, S. D.; Dodić, J. M.; Grahovac, J. A. (2012). Process model and economic analysis of ethanol production from sugar beet raw juice as part of the cleaner production concept. Bioresource Technology, 104, pp. 367–372. https://dx.doi.org/10.1016/j.biortech.2011.10.085.
Wu, J.; Liu, Y.; Zhao, S.; Sun, J.; Jin, Z.; Zhang, D. (2019). Application of Dynamic Regulation to Increase L-Phenylalanine Production in Escherichia coli. J. Microbiol. Biotechnol., 29(6), pp. 923–932. https://dx.doi.org/10.4014/ jmb.1901.01058.
WVU. (2020) Batch Production of Aminoacids. Disponible en: https://cbe.statler.wvu.edu/files/d/450550ca-9cab-4688-a9b8-f73bc1c72707/ batch-production_of_ amino_acids.pdf. [Consultado 5 de febrero de 2020].
Yuan, P.; Cao, W.; Wang, Z.; Chen, K.; Li, Y.; Ouyang, P. (2015). Enhancement of L-phenylalanine production by engineered Escherichia coli using phased exponential L-tyrosine feeding combined with nitrogen source optimization. Journal of Bioscience and Bioengineering, 120(1), pp. 36-40. https://dx.doi.org /10.1016/j.jbiosc.2014.12.002