Refracciones y reflexiones simultáneas en estimación de velocidades mediante tomografía basada en rayos.

Simultaneous refractions and reflections in velocity estimation via ray-based tomography.

Contenido principal del artículo

Cristhian Dario Zuluaga Herrera
Juan Carlos Muñoz Cuartas

Resumen

En este trabajo se presenta una estrategia de trazado de rayos con aplicación a los problemas de tomografía sísmica. El trazador está basado en el método del camino más corto. La estrategia permite calcular trayectorias de rayos reflejados y refractados simultáneamente, generar rayos con varias fuentes y varios receptores, escoger puntos en interfaces de interés para generar reflexiones en dichos puntos, entre otras. Usando esta aproximación como estrategia de modelado, se implementó una tomografía de tiempos de propagación usando técnicas de reconstrucción algebraica, para estimar velocidades de propagación de ondas en el subsuelo. Se realizaron diferentes experimentos que muestran el comportamiento del trazador de rayos en diferentes escenarios con refracciones y reflexiones, así como los resultados del uso de la técnica de trazado de rayos en problemas de tomografía sísmica, obteniéndose resultados positivos en la identificación de estructuras en el modelo del subsuelo a un costo computacional relativamente bajo.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Biografía del autor/a (VER)

Cristhian Dario Zuluaga Herrera, Universidad de Antioquia

Docente Cátedra Universidad de Antioquia.

Juan Carlos Muñoz Cuartas, Universidad de Antioquia

Group for Computational Physics and Astrophysics (FACOM)

Profesor Instituto de Física - Universidad de Antioquia

 

Referencias (VER)

Albertin, A. et al. (2002) ‘La era de las imágenes en escala de profundidad’, Oilfield Review, pp. 2–17. http://www.slb.com/~/media/Files/resources/oilfield_review/spanish02/sum02/p02_17.ashx

Aster, R. C., Borchers, B. and Thurber, C. H. (2018) ‘Iterative Methods’, in Aster, R. C., Borchers, B., and Thurber, C. H. (eds) Parameter Estimation and Inverse Problems. Second Edi. Boston: Academic Press, pp. 151–179. https://doi.org/10.1016/b978-0-12-804651-7.00011-0

Cerveny, V. (2001) Seismic ray theory, Geophysical Journal International. Cambridge University Press. https://doi.org/10.1046/j.1365-246X.2002.01638.x.

Cheng, N. and House, L. (1996) ‘Minimum traveltime calculation in 3-D graph theory’, Geophysics. Society of Exploration Geophysicists, 61(6), pp. 1895–1898. https://doi.org/10.1190/1.1444104

Dijkstra, E. W. (1959) ‘A note on two problems in connexion with graphs’, Numerische Mathematik. Numerische Mathematik 1, pp. 269–271. https://doi.org/10.1007/bf01386390

Dobróka, M. and Szegedi, H. (2014) ‘On the Generalization of Seismic Tomography Algorithms’, American Journal of Computational Mathematics, 04(01), pp. 37–46. https://doi.org/10.4236/ajcm.2014.41004

Fajardo, C. and Castillo, J. (2013) ‘Migración Sísmica usando FPGAs y GPGPUs : Un artículo de revisión’, 9(17), pp. 261–293. https://doi.org/10.17230/ingciecia.9.17.13

Fischer, R. and Lees, J. M. (1993) ‘Shortest path ray tracing with sparse graphs’, Geophysics. Society of Exploration Geophysicists, 58(7), pp. 924–1060. https://doi.org/10.1190/1.1443489

Gallo, G. and Pallottino, S. (1986) ‘Shortest path methods: A unifying approach’, in. Springer, Berlin, Heidelberg, pp. 38–64. https://doi.org/10.1007/bfb0121087

Giroux, B. and Larouche, B. (2013) ‘Task-parallel implementation of 3D shortest path raytracing for geophysical applications’, Computers and Geosciences, 54, pp. 130–141. https://doi.org/10.1016/j.cageo.2012.12.005

Hernández, J. J. et al. (2006) ‘Marco conceptual del proyecto de microzonificación de Caracas y Barquisimeto’, in VIII Congreso Venezolano de Sismología e Ingeniería Sísmica.

Jones, I. F. (2010) ‘Tutorial: Velocity estimation via ray-based tomography’, First Break, 28(2), pp. 45–52. https://doi.org/10.3997/1365-2397.2010006

Lo, T. when and Inderwiesen, P. (1994) Geophysical Monograph Series, Fundamentals of seismic tomography. Society of Exploration Geophysicists.

Malony, A. D., McCumsey, S., et al. (2017) ‘A data parallel algorithm for seismic raytracing’, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 89–98. https://doi.org/10.1007/978-3-319-61982-8_10

Malony, A. D., Monil, M. A. H., et al. (2017) ‘Towards Scaling Parallel Seismic Raytracing’, in Proceedings - 19th IEEE International Conference on Computational Science and Engineering, 14th IEEE International Conference on Embedded and Ubiquitous Computing and 15th International Symposium on Distributed Computing and Applications to Business, Engi, pp. 225–233. https://doi.org/10.1109/cse-euc-dcabes.2016.189

Margrave, G. F. (2001) ‘Numerical Methods of Exploration Seismology with algorithms in MATLAB’, Book. Calgary, p. 160. http://www.crewes.org/ResearchLinks/FreeSoftware/NumMeth.pdf

Meléndez, A. et al. (2013) ‘TOMO3D - A New 3-D Joint Refraction and Reflection Travel-time Tomography Code for Active-source Seismic Data’, London 2013, 75th eage conference en exhibition incorporating SPE Europec. Oxford University Press, 203(1), pp. 158–174. https://doi.org/10.3997/2214-4609.20130372

Meléndez, A. et al. (2015) ‘TOMO3D: 3-D joint refraction and reflection traveltime tomography parallel code for active-source seismic data—synthetic test’, Geophysical Journal International, 203(1), pp. 158–174. https://doi.org/10.1093/gji/ggv292

Monil, M. A. H. et al. (2018) ‘Stingray-HPC: A Scalable Parallel Seismic Raytracing System’, in Proceedings - 26th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, PDP 2018, pp. 204–213. https://doi.org/10.1109/pdp2018.2018.00035

Monsegny, J. and Agudelo, W. (2013) ‘Shortest path ray tracing on parallel GPU devices’, SEG Technical Program Expanded Abstracts 2013. Society of Exploration Geophysicists, pp. 3470–3474. https://doi.org/10.1190/segam2013-0802.1

Moser, T. J. (1991) ‘Shortest path calculation of seismic rays’, Geophysics, 56(1), pp. 59–67. https://doi.org/10.1190/1.1442958

Moser, T. J. (1992) ‘The shortest path method for seismic ray tracing in complicated media’, Geologica Ultraiectina, 83, pp. 1–180.

Nakanishi, I. and Yamaguchi, K. (1986) ‘A numerical experiment on nonlinear image reconstruction from first-arrival times for two-dimensional island arc structure.’, Journal of Physics of the Earth, 34(2), pp. 195–201. https://doi.org/10.4294/jpe1952.34.195

Pięta, A. and Dwornik, M. (2012) ‘Parallel implementation of ray tracing procedure in anisotropic medium’, Task Quarterly, 16(1), pp. 135–143.

Scales, J. A. (1987) ‘Tomographic inversion via the conjugate gradient method’, Geophysics, 52(2), pp. 179–185. https://doi.org/10.1190/1.1442293

Vidale, J. (1988) ‘Finite-difference calculation of travel times’, Bulletin of the Seismological Society of America. Seismological Society of America, 78(6), pp. 2062–2076.

Zhang, J.-Z., Chen, S.-J. and Xu, C.-W. (2004) ‘A Method of Shortest Path Raytracing with Dynamic Networks’, Chinese Journal of Geophysics. Wiley Online Library, 47(5), pp. 1013–1018. https://doi.org/10.1002/cjg2.580

Zhang, M.-G. et al. (2013) ‘A Fast Algorithm of the Shortest Path Ray Tracing’, Chinese Journal of Geophysics. Wiley Online Library, 49(5), pp. 1315–1323. https://doi.org/10.1002/cjg2.955

Zhang, M. et al. (2017) ‘Ray tracing of turning wave in elliptically anisotropic media with an irregular surface’, Earthquake Science. Springer, 30(5–6), pp. 219–228. https://doi.org/10.1007/s11589-017-0192-5

Zhang, X. et al. (2018) ‘Joint tomographic inversion of first-arrival and reflection traveltimes for recovering 2-D seismic velocity structure with an irregular free surface’, Earth and Planetary Physics. Wiley Online Library, 2(3), pp. 1–11. https://doi.org/10.26464/epp2018021