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Abstract
Objective: This study aimed to develop a control architecture for reactive autonomous 
navigation of a mobile robot by integrating Deep Learning techniques and fuzzy behaviors 
based on traffic signal recognition. Materials: The research utilized transfer learning with 
the Inception V3 network as a base for training a neural network to identify traffic signals. 
The experiments were conducted using a Donkey-Car, an Ackermann-steering-type open-
source mobile robot, with inherent computational limitations. Results: The implementation 
of the transfer learning technique yielded a satisfactory result, achieving a high accuracy of 
96.2% in identifying traffic signals. However, challenges were encountered due to delays 
in frames per second (FPS) during testing tracks, attributed to the Raspberry Pi’s limited 
computational capacity. Conclusions: By combining Deep Learning and fuzzy behaviors, the 
study demonstrated the effectiveness of the control architecture in enhancing the robot’s 
autonomous navigation capabilities. The integration of pre-trained models and fuzzy logic 
provided adaptability and responsiveness to dynamic traffic scenarios. Future research 
could focus on optimizing system parameters and exploring applications in more complex 
environments to further advance autonomous robotics and artificial intelligence technologies.
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Navegación autónoma reactiva de un 
robot móvil basada en aprendizaje 
profundo y comportamientos difusos

Resumen
Objetivo: este estudio tuvo como objetivo desarrollar una arquitectura de control para la 
navegación autónoma reactiva de un robot móvil mediante la integración de técnicas de Deep 
Learning y comportamientos difusos basados en el reconocimiento de señales de tráfico. 
Materiales: la investigación utilizó transfer learning con la red Inception V3 como base 
para entrenar una red neuronal en la identificación de señales de tráfico. Los experimentos se 
llevaron a cabo utilizando un Donkey-Car, un robot móvil de código abierto tipo Ackermann, 
con limitaciones computacionales inherentes. Resultados: la implementación de la técnica de 
transfer learning arrojó un resultado satisfactorio, logrando una alta precisión del 96.2% en la 
identificación de señales de tráfico. No obstante, se encontraron desafíos debido a retrasos en 
los cuadros por segundo (FPS) durante las pruebas, atribuidos a la capacidad computacional 
limitada de la Raspberry Pi. Conclusiones: al combinar Deep Learning y comportamientos 
difusos, el estudio demostró la efectividad de la arquitectura de control en mejorar las capacidades 
de navegación autónoma del robot. La integración de modelos pre-entrenados y lógica 
difusa proporcionó adaptabilidad y capacidad de respuesta a escenarios de tráfico dinámicos. 
Investigaciones futuras podrían centrarse en optimizar los parámetros del sistema y explorar 
aplicaciones en entornos más complejos para avanzar aún más en las tecnologías de robótica 
autónoma e inteligencia artificial.

Palabras clave: navegación autónoma, aprendizaje profundo, comportamientos difusos, 
arquitectura de control, redes neuronales, inteligencia artificial.

1. Introduction

The term artificial intelligence (AI) is considered to have been originated 
for the first time at the Dartmouth conference in 1955 (McCarthy, et al., 
1955). Since then, the approach of this technology has gone through 
several transitions over more than 60 years. It initially focused on general 
problem solving (GPS) (Newell, et al., 1958) without much success, 
leading to a winter on the subject, in part due to the 1973 Lighthill (1973) 
report, however, in 1982, the Japanese decided to commit to a highly 
ambitious project called “Fifth Generation Computer Systems” (FGCS) 
(Treleaven & Lima, 1982), which generated an impetus for a renew 
interest in AI on the western countries, marking the path for the United 
States and Europe to focus on the development of Intelligent Knowledge-
Based Systems (IKBS) (Blacklock, 1986) also called “Expert systems”. 
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Lastly, in the last decade, driven mainly by the exponential growth of 
Data and systems processing capabilities. Machine Learning (ML) and 
Deep Learning (DL) are considered highly relevant research topics, 
essentially due to the applications that have generated a wide impact 
on the world (Bengio, 2016; Soori, et al., 2023). In the last five years, 
society is on the cusp of a new and profound technological revolution: 
Autonomous driving of vehicles (Qian, et al., 2024). It is still early to 
predict the impact on societies or industry (Sharifani & Amini, 2023); 
however, we will be able to witness immense changes.

The main objective of the present project is to structure a control 
architecture based on Deep Learning and fuzzy behaviors, taking 
advantage of the great variety of open source tools available on the web, 
along with the wonderful community behind it (Bachute & Subhedar, 
2021; Vinolia, et al., 2023). The architecture is designed so the robot 
detects obstacles through image recognition using Convolutional Neural 
Networks (CNN) models, and right after the detection, based on a set 
of established fuzzy behaviors the robot will take a specific action 
(Afif, et al., 2020). The control architecture will be implemented in an 
Ackermann-steering-type open source mobile robot known as Donkey-
Car (DonkeyCar, 2024), designed to apply autonomous driving in small-
scale cars, therefore, there are limitations inherent to the computational 
capacity of the robot. 

In order to achieve the objective, the project will be divided in four 
sections as follow: in section two a brief description of some general 
Deep Learning alternatives used in autonomous navigation will be given, 
selecting the one that adapts the most to the characteristics of the project, 
as well as the establishment of a set of fuzzy behaviors based on the 
recognition of traffic signals and subsequently both strategies shall be 
combined in a control architecture. Hardware and software tools used 
on the development of the project, and a description of the test circuit 
used for the experiments are discussed in section three. Results and 
conclusions are presented in section four.
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2. Background: DL algorithms and fuzzy behaviors

2.1. DL Alternatives for autonomous navigation of a robot

The neural network algorithms for object detection available have to 
meet two main conditions to be implemented as a solution to this project. 
On one hand, it has to be lightweight, due to inherent limitations in the 
hardware, and on the other hand, it has to be compatible with the ROS 
architecture.

We will focus our attention in the following algorithms, first, “You 
Only Look Once (YOLO)” one of the most known options, which 
besides of being open source and work with only CPU and/or GPU, 
it has the main characteristic of using a single convolutional neural 
network (CNN) to predict which objects are present and delimit their 
location using selector boxes (Redmon, et al., 2016; Dahirou & Zheng, 
2021) On the other hand, we have Inception V3 algorithm, based on 
(Szegedy, et al., 2016). It was designed with the main objective of solving 
the computational expense problem of its previous versions through a 
dimension reduction with 1x1 stacked convolutions. Like the previous 
one, it also relies on CNN and can be run with CPU and/or GPU.

Table 1. Characteristics of the algorithms. Source: Authors’ own creation.

YOLO V2 Inception V3

Framework Darknet TensorFlow
PyTorch

Neural Network CNN CNN

Language C++
Python Python

ROS compatible? Yes (Bjelonic, 2024) Yes (OTL, 2024)

Despite the fact that both options previously mentioned comply 
with the condition of being compatible with ROS, the most noticeable 
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difference took place during its execution, that means, once the 
algorithms were launched as ROS nodes, it was easy to read the 
bandwidth in the packets transmission and the publication rate, therefore, 
after a brief analysis, it was determined that ROS-Inception and YOLO 
presented a similar bandwidth transmission of the Raspicam node, which 
corresponds to the images, both similar to the 350 KB/s, however, the 
main difference took place during the node that identifies and labels the 
traffic signals, where ROS-Inception displayed a performance of 11.02 
B/s transmission-wise compared to 201.11 B/s of YOLO, therefore, 
it is also theorized that due to Darknet framework higher resource 
consumption within the Raspberry Pi, there was a low performance of 
the frames per second (FPS), as consequence, generating a significant 
delay in the detection and classification of traffic signals, and hence, low 
performance in the completion of the fuzzy behaviors. Specific objectives 
of this project. 

2.2. Fuzzy behaviors

The second part of the control architecture consists of the set of fuzzy 
behaviors based on the recognition of signals used in traffic, it means, 
depending on the traffic signal that the algorithm defined in the previous 
section identifies, a series of actions will be executed that will modify the 
direction and speed of movement of the robot (Kahraman, et al., 2020; 
Lin, et al., 2021). 

The traffic signs, along with a brief description of the action the robot 
will carry out, are defined in table 2.
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Table 2. Set of fuzzy behaviors. Source: Authors’ adaptation.

Description Image Description Image

The robot moves 
straight

The robot turns 
left

The robot turns 
right

The robot slows 
down until it 

stops completely

Linear velocity 
of the robot in-

creases 50%

2.3. Control architecture

To represent the project’s control architecture, ROS has a graphical 
interface tool known as rqt_graph, which allows you to visualize a ROS 
computing graph, which is equivalent to a ROS control architecture 
(Figure 1) (Mengoli, et al., 2021; ROS, 2024).

/raspicam_node. This node activates the Raspberry Pi camera and 
images are sent to the /rostensorflow node.

/rostensorflow. The trained CNN (Inception v3) processes the camera 
images and sends the results to the /Fuzzy node.

/Fuzzy. The node sends linear and/or angular movement commands 
to the motors, where they are received by the /dk_llc node.
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Figure 1. Control architecture. Source: Authors’ own creation.

3. Materials and methods

3.1. Robot Operating System (ROS)

It is an open-source robotics middleware. ROS provides a distributed 
programming environment, for both, real and simulated robots, as well 
as hardware abstraction, low-level control, message-passing between 
processes, software package management and tools and libraries for 
obtaining, building, writing, and running code across multiple computers. 
Nowadays, ROS has become the de-facto standard for robotics research 
(Itsuka, et al., 2022).

3.2. Donkey-car

It is an Ackermann-steering-type open source mobile robot designed 
to apply autonomous driving in small-scale cars, whose chassis is the 
1/16th Exceed RC- magnet Truck, along with a single-board computer, 
the Raspberry Pi 3B, its 5MP camera and the PCA9685 board to control 
the servo motors though I2C communication.

Due to the hardware limitations within the embedded card, it was 
decided to use the operating system based on GNU/Linux, Ubuntu Mate 
16.04.2 Armhf compatible with ROS1 Kinetic Kame.



Enhancing Mobile Robot Navigation: Integrating Reactive Autonomy through Deep Learning and Fuzzy Behavior

8       https://doi.org/10.24050/reia.v21i42.1764

3.3. Workstation

Lenovo Yoga 510 series with Intel Core i3-6100U CPU @ 2.30GHz 
x 4 processor, 7.7 GB of RAM and 114.5 GB of HDD. We used the 
workstation to train our own model by creating a virtual space with 
Anaconda with the following characteristics, TensorFlow 1.19.1 and 
Python 3.7

3.4. German Traffic Sign Recognition Benchmark (GTSRB)

It is a dataset that contains 43 classes of traffic signs, split into 
39,209 training images and 12,630 test images. The images have varying 
light conditions and rich backgrounds (Stallkamp, et al., 2012). For 
the purpose of this project, only the classes mentioned in Table 2.2 are 
selected, which together contain 5339 elements.

3.5. ROS-Inception V3

The algorithm is based on CNN, compatible with ROS and can be 
configured through TensorFlow or PyTorch. To simplify the training 
time of the model, we will apply the transfer learning technique, which 
consists of reusing a model that has been previously trained with a large 
data set, and use it as a starting point for our own purpose (Transfer 
learning, 2024). For the purpose of this project, only the top layer will 
be retrained, leaving the others unchanged. Although it is not as good as 
training a system from scratch, it is quite effective for our purpose, and 
can be run from the PC, without the need for a GPU. Noteworthy, the 
images have been resized to 128x128x3.

4. Results and discussions

4.1 Experiments

For the validation experiments, two driving circuits were used, in 
which part of the traffic signals from Table 2 were incorporated. The first 
circuit shown in Figure 2 is a straight track of 10,25 meters. The second 
circuit in Figure 3 consists of a straight line of 4,25 meters, then a right 
turn and ends in a straight line of 3 meters.
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Figure 2. Test track 1. Source: Authors’ own creation.

Figure 3. Test track 2. Source: Authors’ own creation.

4.2 Inception

We used the transfer learning technique in order to simplify the 
training time and get our own model, the concept consists in reusing a 
model that has been previously trained to only re-train the upper layer, 
leaving the rest unchanged. For the purpose of this project we used 
Inception V3 to try to identify the classes shown in Figure 4, and from 
GTSRB dataset a total of 5339 elements corresponding to the classes 
were used. The script includes a series of modifiable fields that made 
it possible to achieve an acceptable model. It was decided to keep all 
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distortions disabled and to use the default arguments that may impact the 
training process, i,e.:

how_many_training_steps = 4000 learning_rate = 0,01

testing_percentage = 10% validation_percentage = 10%

Thanks to the above-mentioned, the accuracy the model reached after 
the training was of 96.2% as shown in Figure 5.

Figure 4. Classes. Source: Authors’ own creation.

Figure 5. Training results. Source: Authors’ own creation.
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4.3 Donkey-Car

Circuit I showed the better performance when the robot identified 
the start and stop signal. Even though the circuit was successfully 
completed, sometimes a delay in the FPS was presented, causing that the 
fuzzy commands did not played their part on time, which was expected 
due to the limited computational capacity of the Raspberry Pi and data 
transmission through WiFi. There was a similar behavior during circuit II, 
in this case, the knot of the issue was presented when the car was trying 
to modify its angular movement. In both circuits the Donkey-Car was 
able to identify the traffic signals.

4.4 Final analysis

The research presented in this document underscores the importance 
of combining Deep Learning techniques and fuzzy behaviors to achieve 
reactive autonomous navigation in a mobile robot. By analyzing the 
evolution of artificial intelligence over the past decades, a significant shift 
towards more specialized and applied approaches is evident, such as the 
use of Convolutional Neural Networks (CNNs) for object detection in 
dynamic environments.

The implementation of a transfer learning model using Inception V3 
has proven effective in identifying specific classes in a dataset of traffic 
signals. The model’s accuracy of 96.2% after training highlights the 
efficacy of this strategy in adapting pre-trained models to specific tasks, 
thereby reducing the time and resources required for training.

Integrating fuzzy behaviors based on traffic signal recognition 
into the robot’s control architecture provides an additional layer 
of adaptability and responsiveness to changing situations in the 
environment. This combination of deep learning techniques and fuzzy 
logic enables the robot to make informed and safe decisions in real-time, 
enhancing its capability for autonomous navigation in complex scenarios.
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5. Conclusions

Due to the transfer learning technique and using the Inception V3 
network as a base, a satisfactory result was obtained in the training of 
a neural network for the identification of traffic signals. Especially, this 
technique reduced considerably the training time and allowed training 
without the Nee of a GPU.

Due to the low computational capacity of the Raspberry Pi within the 
Donkey Car, during the tests tracks, sometimes there were delays in the 
FPS, therefore, a delay in the movements of the robot.

In conclusion, this study has demonstrated that integrating Deep 
Learning and fuzzy behaviors in an autonomous navigation system 
can significantly enhance a mobile robot’s ability to interact safely and 
efficiently with its environment. Leveraging pre-trained models alongside 
transfer learning techniques has accelerated the training process and 
improved object detection accuracy.

Furthermore, incorporating fuzzy behaviors based on traffic signal 
recognition has proven to be an effective strategy for adapting the 
robot’s behavior to specific traffic situations, ensuring smoother and 
safer navigation. These findings underscore the importance of combining 
different artificial intelligence approaches to develop robust and adaptable 
autonomous systems.

In the future, exploring the application of these techniques in 
more complex and dynamic environments, as well as optimizing 
key parameters to further enhance system performance, could be 
valuable. This research lays the groundwork for future advancements 
in the field of autonomous robotics and artificial intelligence, 
opening up new possibilities for the creation of intelligent and 
secure autonomous systems.
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