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Abstract

In some areas of knowledge, we can find phenomena represented by negative variables  
(ℝ#)	; having a statistical model is crucial to describe the phenomenon and explain it using 
other variables. This paper proposes a regression model to analyze negative random varia-
bles using the reflected Weibull distribution. This paper reports the RelDists package created 
in the R programming language to implement the proposed model. A Monte Carlo simulation 
study was conducted to explore the performance of the estimation procedure. The simula-
tion study encompasses two cases: without covariates and with covariables. In the first case, 
we only have the response variable to estimate the distribution parameters. In the second 
case, we have the response variable and two explanatory variables to estimate the model 
parameters. Additionally, censored and uncensored data were considered in the simulation 
study. From the simulation study, we found that the estimation procedure achieves accurate 
estimations of the parameters as the sample size increases and the percentage of censoring 
decreases. In the paper, we present an application of the proposed model using experimental 
data from a compression test with concrete specimens. In the application, a model was fitted 
to explain the shrinkage strain using the variable time. The regression model for negative 
variables and the RelDists package can be used by academic, scientific, and business commu-
nities to perform reliability analysis.
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Modelo estadístico para el análisis de 
variables negativas con aplicación a 
pruebas de contracción en concreto 
Resumen

En algunas áreas de conocimiento se pueden presentar fenómenos que son representados por 
variables aleatorias negativas (ℝ#)	; contar con un modelo estadístico es crucial para repre-
sentar esos fenómenos y explicarlos en función de otras variables auxiliares. En este trabajo 
se propone un modelo de regresión para el análisis de variables aleatorias negativas tomando 
como distribución para la variable respuesta la distribución Weibull reflejada. En este artículo 
reportamos el paquete RelDists creado en el lenguaje de programación R para facilitar el uso 
del modelo de regresión propuesto. Por medio de un estudio de simulación Monte Carlo se 
exploró el desempeño del proceso de estimación de parámetros. En el estudio de simulación 
se consideraron dos casos: sin covariables y con covariables. El primer caso se refiere a la 
situación en la cual sólo se tiene la variable respuesta y con ella se deben estimar los paráme-
tros de la distribución. En el segundo caso se tiene la variable respuesta y variables explicativas 
que en conjunto se usan para estimar los parámetros del modelo de regresión. Adicionalmente, 
en el estudio de simulación se consideraron datos censurados y no censurados. Del estudio se 
encontró que el proceso de estimación logra estimar bien los parámetros del modelo a medida 
que el tamaño de la muestra aumenta y que el porcentaje de censura disminuye. En el artículo 
se muestra una aplicación del modelo propuesto usando datos experimentales provenientes de 
una prueba de contracción con probetas de concreto. En la aplicación se construyó un modelo 
para explicar la contracción de las probetas en función del tiempo. El modelo de regresión para 
variables aleatorias negativa y el paquete RelDists pueden ser usados por comunidades acadé-
micas, científicas y de negocios para el desarrollo de análisis de confiabilidad.

Palabras clave: confiabilidad, datos censurados, estimación de parámetros, GAMLSS, len-
guaje de programación R, máxima verosimilitud, modelo de regresión, prueba de contracción 
en concreto, variable aleatoria negativa, Weibull reflejada.

1. Introduction 

The worldwide market is more competitive and demanding than ever; therefore, 
companies are required to focus on achieving customer satisfaction through new 
initiatives and customer loyalty strategies. Hence, the systems and machines used to 
manufacture their products have to be reliable in order to work according to produc-
tion plans. Reliability concepts can be applied to minimize the possibility of failures 
in machines, tools, and materials and allow early detection and correction of design 
deficiencies. Reliability can be studied by modeling the behavior of random variables 
involved in the process through various probability distributions.

Reliability, as defined by Meeker and Escobar (2014), is the probability that a 
system will perform its intended function under operating conditions for a specified 
period of time; it is a definition used in a variety of industrial settings. To quantify 
the reliability of an item, we use a probabilistic metric, which treats reliability as a 
probability of the successful achievement of an item’s intended function (Modarres, 
Kaminskiy & Krivtsov , 2016). The metric can be obtained by using probability 
distributions that model the behavior of the data. Hence, if the true behavior is 
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modeled and measured, then good estimations can be made to make decisions related 
to the prevention or the reduction of frequent failures.

Distribution fitting is a procedure of choosing a probability distribution model 
and finding parameter estimates for that distribution. This procedure requires 
judgment and expertise, and generally needs an iterative process of distribution 
choice, parameter estimation, and quality of fit assessment. Lifetime data commonly 
fit distributions such as gamma, Weibull, exponential or lognormal. Even though 
these distributions have been shown to be very flexible in modeling various types of 
lifetime distributions, in practice, they cannot be used to model all three phases of a 
bathtub curve at the same time. Some authors such as Xie and Lai (1996), Barreto-
Souza, Santos, and Cordeiro (2010), Lee, Famoye, and Olumolade (2007), Zhang and 
Xie ( 2007) and Stacy (1962) have proposed some flexible probability distributions 
for effective models. 

In this paper, we study the reflected Weibull (RW) distribution based on 
reflecting the Weibull distribution. It is a model appropriate for reliability testing 
the mechanical properties determined by the standardized fatigue test performance 
of ductile materials and the mechanics of the fatigue of bearings (Lai, 2014, 
Balakrishnan & Kocherlakota, 1985, Ali & Woo, 2006). The advantage of using this 
distribution, instead of the traditional distributions in reliability such as Weibull, 
lognormal or gamma, is that the estimations and interpretations are made on the 
natural scale of the variable, avoiding transformation of the original variable.

In the analysis of uncensored data, Wei et al. (2016) assembled some techniques 
within a framework in order to evaluate the reliability of vehicle components. One of 
the techniques used in this framework is called variable transformation, which can 
be obtained either using the Weibull or the RW distribution. Furthermore, the RW 
distribution has been used by Orjubin (2007) to model electromagnetic compatibility 
tests, applying the generalized extreme value distribution, which was obtained in 
terms of the RW distribution. In the analysis of censored data, Cohen (1975) used the 
RW, Pearson type III, IV, V, and lognormal distributions to estimate the parameters 
of an interval of censored data. The RW distribution had the best performance in 
this application. In addition, Cohen (1975) applied the three-parameter Weibull 
distribution to type II multicensored data, obtained in three different stages, by 
removing data once a certain number of failures had occurred.

In addition to the application of the RW distribution in various settings, the 
distribution has been useful for creating new distributions. Authors such as Caron 
et al. (2018) have proposed a Weibull link (skewed) model for categorical response 
data arising from binomial, as well as multinomial, models, where the link function 
is the RW distribution. Additionally, Al Abbasi, Risan, and Resen (2018) proposed the 
Kumaraswamy-reflected Weibull distribution as an extension to the RW distribution. 

Some authors have developed estimation methods for the parameters of the 
RW distribution from the frequentist and Bayesian points of view. In the case of 
frequentist estimation methods, Nagatsuka, Kamakura, and Balakrishnan (2013) 
proposed a method called the location and scale parameters free maximum likelihood 
estimator. This method demonstrated an improved performance using large samples 
for the bias and root mean square error (RMSE) metrics in comparison with other 
parameter estimation methods such as the weighted maximum likelihood. Cohen 
and Whitten (1982) modified the maximum likelihood estimation (MLE) method for 
application in the three-parameter Weibull distribution. This modification can be 
adapted to two-parameter distributions such as the RW distribution. Regal and Larntz 
(1978) demonstrated parametric likelihood methods for analyzing censored data; 
these methods could be modified for other families of distributions. Cohen (2016) 
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gave an illustrative example using censored data from a Weibull population. In the 
case of bayesian estimation methods, authors as Kalsoom, Nasir, and Syed (2019a, 
2019b) have estimated the scale parameter of the RW Distribution under bayesian 
analysis by using non-informative priors and informative priors. 

Although many authors have used the RW distribution, it is not easy to 
estimate its parameters and analyze its reliability because this distribution is not 
yet implemented in any software. For this reason, it is essential to build a library or 
package in any computational program that contains these kinds of nontraditional 
distributions to make these distributions accessible to users and researchers 
worldwide, so that they apply the RW distribution in different areas. 

This paper aims to present a statistical model for negative variables associated 
with real phenomena using the RW distribution. Additionally, we implemented the RW 
distribution on the RelDists package in the R programming language (R Core Team, 
2021) to encourage the use of this distribution in many applications. The RelDists 
package contains functions useful to obtain the density, quantiles, probability, hazard, 
and random samples for the RW distribution. With the RelDists package, it is possible 
to obtain estimations for the RW distribution or the RW regression model. We also 
studied the asymptotic behavior of RW estimators through a Monte Carlo simulation 
following the ADEMP (Aims, Data-generating mechanisms, Estimands, Methods, and 
Performance measures) methodology proposed by Morris, White, and Crowther 
(2019).

The paper is structured as follows. Section 2 introduces the RW distribution. 
Section 3 describes the parameter estimation method, and section 4 presents the RW 
regression model. In section 5, we introduce the RelDists package. Section 6 presents 
the Monte Carlo simulation study, and in section 7, we can find the results. Finally, an 
application with real data is shown in Section 8.

2. Materials and methods

2.1.	 Reflected	Weibull	distribution
By reflecting the Weibull distribution over the vertical axis Y = –X, Cohen (1975) 
introduced the three-parameter reflected Weibull distribution, and later, Almalki and 
Nadarajah (2014) reparametrized this distribution and obtained the two-parameter 
reflected Weibull (RW) distribution, which has a location parameter μ and scale para-
meter σ. 

Probability density function: The probability density function (pdf) of the RW 
distribution is given by the following expression:

  ! "; $, & = $& −" )*+,*- *. /, (1) 

	
where y < 0 and μ,σ > 0. If a random variable Y follows a RW distribution, we can 

denote as Y ~ RW (μ,σ). The pdf is useful to find the probability that the random varia-
ble Y is in a specific interval. 

Figure 1 shows the pdf of the RW distribution for different values of μ and σ. 
When σ = 1 we obtain the exponential distribution. The left panel of Figure 1 shows 
the pdf shapes for the location parameter μ = 1,2,3 and a common scale parameter  
σ = 1. The figure shows that if the scale parameter is fixed and the value of the sha-
pe parameter increases, the distribution of Y is J-shaped. The right panel of Figure 1 
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shows the pdf shapes for the location parameter μ = 1 and the scale parameter  
σ = 1,2,3. The figure shows that if the shape parameter is fixed and the value of the 
scale parameter increases, the distribution of Y becomes bell-shaped.

 
Figure 1. Probability density function of the RW distribution for different values of 
μ and σ. The curves in the left panel have common σ = 1 and the right panel shows 
curves with μ = 1.

Cumulative density function: The cumulative density function (cdf) of the RW 
distribution is given by the following:

 
 ! "; $, & = ()* )+ ,, (2) 

	
where y < 0 and μ,σ > 0. With the cdf, we obtain the probability that the ran-

dom variable Y is less or equal to the value y. In addition, from the cdf, the reliability 
function (Rf) can be obtained from the following expression: 

  ! "; $, & = 1 − *+, +- ., (3) 

	 where y < 0 with μ,σ > 0. The Rf calculates the probability of an item operating 
for a certain amount of time without failure. Figure 2 shows the cdf (left) and the Rf 
(right) of the RW distribution for different values of μ and σ.

 

Figure 2. Cumulative density function and reliability function of the RW distribution 
for different values of μ and σ.
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Hazard function: The expression for the hazard function (hf) of the RW distribu-
tion is given as follows:

  ℎ "; $, & = $& −" )*+, (4) 

	 where y < 0 and μ,σ > 0. With the hf function, we can measure the probability that 
the product has not failed in a specific time. 

Figure 3 shows the hazard function of the RW distribution for different values 
of μ and σ. These shapes shown in the figure are common in systems in the wear-out 
phase, such as the mechanical phase, in accumulation systems, such as pipes, and in 
the wearing of tools.

 
Figure 3. Hazard function of the RW distribution for different values of μ and σ.

Quantile function: The quantile function (qf) of the RW distribution is given by 
the following:

 
 

! "; $, & = − −1$ log	(")
0
1
, (5) 

	
where 0 < p < 1 and μ,σ > 0. The qf is obtained by getting the inverse function of 

the cdf. The qf calculates the time at which a fraction or proportion p of the units is 
expected to fail.

Random function: The random function (rf) of the RW distribution was built from 
the Inverse Transform Algorithm (Ross, 2012) and is given by the following:

 
! "; $, & = − −1$ log	(")

0
1
, (6) 

	
where p is a random number from the uniform distribution in the interval [0,1] 

and μ,σ > 0. The rf is used as the basis for generating deviations from the RW distribu-
tion.
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2.2.	Parameters	estimation
This section presents the estimation method for the RW distribution based on the 
maximum likelihood method. Let be y1,y2,…,yn a random sample from (1) and  
θ	= (μ,σ)T be the vector of unknown parameters. The log-likelihood function for θ	 is 
given by the following:

  
! " = log ' + log ) + ) − 1 	log −-. − ' −-. /

0

.12
 (7) 

	 By taking the partial derivates of l(θ) with respect to μ and σ, and letting them be 
equal to zero, we have the following two equations:

  !" #
!$ = 1

$ − −() * = 0
,

)-.
 (8) 

 !" #
!/ = 1

/ + log	(−()) − $ −() *log	(−()) = 0
,

)-.
 (9) 

	 The maximum likelihood estimates 𝜽𝜽"  of θ are obtained by solving the likelihood 
equations (8) and (9). One contribution of this paper is that we created a procedure in 
the language programming R (2020) to take advantage of the gamlss package to solve 
the expressions (8) and (9) to obtain the maximum likelihood estimates of θ. The 
gamlss package has three algorithms to obtain the maximum likelihood estimates: the 
Rigby and Stasinopoulos (RS) algorithm, the Cole and Green (CG) algorithm, and the 
mixed algorithm.

2.3.	Reflected	Weibull	regression	model
In this section, we present the RW regression model using the maximum likelihood 
method in the framework of the generalized additive model for location, scale and 
shape (GAMLSS) (Rigby & Stasinopoulos, 2005). These models have some advanta-
ges over linear models because they are flexible, and they have no limitations with 
the Gaussian assumption (Hernández et al., 2021). The RW regression model assu-
mes that the observations yi for i = 1,…,n are independent with a probability density 
function f (y;μ,σ) given in expression (1). The structure of the RW regression model is 
as follows:

  
!" # = %" = &"'" + )*"+*",

-.

*/"
 (10) 

 
!0 1 = %0 = &0'0 + )*02*0,

-3

*/"
 (11) 

	
where gk (.) is a known monotonic link function for k = 1,2 to map the linear 

predictor into the parameter domain, by default, these functions are log ( ); Xk are 
known design matrices of order 𝑛𝑛×𝐽𝐽𝑘𝑘

′  associated with the fixed effects βk of  𝑛𝑛×𝐽𝐽𝑘𝑘
′ ×1 and 

Zjk are known design matrices of order n × qjk associated with the random effects ςjk of 
qjk × 1 with multivariate normal distribution. The quantity 𝑛𝑛×𝐽𝐽𝑘𝑘

′  represents the number 
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of covariates used in the fixed effects of ηk, while Jk represents the number of random 
effects in ηk.

The diagnostics for the RW regression model is based on the normalized quantile 
residuals (Dunn & Smyth, 1996). The main advantage of the normalized quantile resi-
duals is that the true residuals always have a standard normal distribution when the 
assumed model is correct. Since the checking of model assumptions via the normality 
of residuals is well established within the statistical literature, the normalized quan-
tile residuals provide us with a familiar way to check the adequacy of the fitted model 
(Stasinopoulos et al., 2017).

2.4.	RelDists	package
We developed the RelDists package in the language programming R (2020) to imple-
ment new distributions proposed in the reliability field, and one of these distributions 
is the RW distribution. With the functions in the RelDists package, the user could es-
timate the RW distribution parameters, estimate effects for the RW regression model, 
and obtain the pdf, cdf, hf, qf and rf for the RW distribution. The package also provi-
des useful tools commonly used in the reliability field, such as parameter estimation, 
graphic analysis, and regression analysis. The online documentation of the package 
can be consulted in the url https://ousuga.github.io/RelDists.

To install the RelDists package the user could copy and paste the next instruc-
tions in R console:

if (!require("devtools"))

install.packages("devtools")

devtools::install_github("ousuga/RelDists",force=TRUE)

library(RelDists)

The functions implemented in RelDists package for the RW distribution are des-
cribed in Table 1.

Table 1. Functions and arguments for the RW distribution in the RelDists package.

Function name Function 

Probability density function dRW(y, mu, sigma) 

Cumulative density function pRW(q, mu, sigma) 

Hazard function hRW(y, mu, sigma) 

Quantile function qRW(p, mu, sigma) 

Random function rRW(n, mu, sigma) 

Reflected Weibull family RW(mu.link="log", sigma.link="log") 

	

The probability density function dRW(y, mu, sigma)allows the user to draw the 
probability density curve and identify the area in which the random variable Y is most 
likely to take values. The red curve of the right panel in Figure 1 can be obtained with:

curve(dRW(x, mu=1, sigma=3),from=-3, to=-0.01)
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In practice, the cumulative density function pRW(q, mu, sigma)allows the user to 
obtain the probability that the random variable is less than or equal to a specific va-
lue. From the red curve on the left panel in Figure 2, it is observed that the probability 
that the random variable Y takes a value lower than -1.0 is small and is exactly equal 
to 0.22, which is obtained from:

pRW(q=-1, mu=1.5, sigma=3)

The hazard function for an item with Y=-2, assuming μ=0.5 and σ=2, can be  
obtained with the instruction:

hRW(y=-2, mu=0.5, sigma=2)

The quantile function qRW(p, mu, sigma)is useful for identifying specific quan-
tiles, for example, the 0.25, 0.50, and 0.75 quartiles. In the case of Y~RW(μ = 1, σ = 3), 
the median 𝑌𝑌"= – 0.88 is obtained as follow:

qRW(p=0.5, mu=1, sigma=3)

In practice, the random function rRW(n, mu, sigma) can be used to generate ran-
dom samples from the RW distribution for creating simulation scenarios to validate 
something of interest in RW the distribution. For example, for the Y~RW(μ = 1, σ = 3) 
we can generate ten random numbers as follows: 

rRW(n=10, mu=1, sigma=3)

Finally, the family function RW(mu.link="log", sigma.link="log") is used in the 
fitting procedure to estimate the parameters for the RW distribution and the regres-
sion coefficients for the RW model. For example, if a user has a random sample stored 
in a vector called ransam, the code to estimate the parameters for the RW distribution 
is as follows:

fit <- gamlss(ransam ~ 1, family=RW)

coef(fit)

The RelDists package uses three methods for parameter estimation provided by 
GAMLSS models (Stasinopoulos et al., 2017). The method is specified in the argument 
called method, with default method=RS(). The user may specify method=CG(), or a 
combination of both algorithms with method=mixed(). In the case of the RelDists dis-
tributions, it is recommended to use the CG method because the cross derivates are 
calculated manually, offering less computation time to fit the models.

3. Simulation study
In this section, we present a Monte Carlo simulation study to analyze the performance 
of the estimation procedure considering two cases, namely, “without covariates” and 
“with covariates”. In both cases, we simulated left censored responses and noncenso-
red data. For this simulation study we use the ADEMP methodology shown in Figure 
4 proposed by Morris, White, and Crowther (2019), which was slightly modified for 
adaption to this study. The methodology involves defining aims, data-generation me-
chanisms, estimands, methods, and performance measures. 
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 Figure 4. ADEMP methodology used in the simulation study.

The measures used to evaluate the parameter estimation procedure were the 
mean value and the mean squared error (MSE) of the estimated components of the 
parameter vector θ in each case. The mean value was chosen to see how similar the 
estimation was compared with the true value. The MSE was selected because it con-
tains the bias-variance trade off, which is important to see how good a model is fitted. 
The mean value for each estimated parameter 𝜃𝜃"𝑘𝑘 is given by the following:

  
!" =

1
% !"&

'

&()
, (12) 

	 where m is the number of the simulation. The MSE for the k estimated parameter 
𝜃𝜃"𝑘𝑘 is given by the following:

  !"#$ = &'( )$ + +,'- )$, )$
/
 (13) 

	
The methodology for the cases analyzed in the simulation study is below.

Case 1: simulation without covariates

In this case, we analyzed the asymptotic behavior of the estimated parameters, �̂�𝜇  and 
𝜎𝜎" , of the RW distribution when there are not covariates, that is, when μ and σ are 
fixed quantities. We consider different sample sizes n=30,50,…,970,1000 and different 
percentages of censored data pcd = 0%,10%,30%,50%. The datasets were generated 
from a model assuming μ = 0.8 and σ =1.2 as given below. 

 
 !"~$%(', )), 

' = 0.8, 
) = 1.2 

(14) 

	
For the combinations of sample size n and percentage of censored data pcd, we 

followed the next steps to simulate the data and to estimate the parameters:

1. Generate a random sample of size n from the population  
RW (μ = 0.8, σ = 1.2).

2. Modify the simulated random sample to ensure a pcd of left censored obser-
vations.

3. Obtain and store the estimations �̂�𝜇  and 𝜎𝜎"  using the proposed procedure.

4. Repeat m=100000 times the steps 1 to 3.
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Case 2: simulation with covariates

In this case, we analyzed the asymptotic behavior of the estimated parameters of the 
RW regression model along different sample sizes n = 30,50,…,970,1000 and different 
percentages of censored data pcd = 0%,10%,30%,50%. The datasets were generated 
from the next model:

 
 !"~$%('", )"), 

log '" = /0 + /23"2, 
log )" = 40 + 423"5, 

 

(15) 

	
where the variables X1 and X2 were generated from X1~U(0.4,0.6) and 

X2~U(0.4,0.6). 

The parameter vector was fixed as θ	= (β0 = 1.5, β1 = -1.5,γ0 = 2,γ1 = -2 )T. For the 
combinations of sample size n and percentage of censored data pcd, we followed the 
next steps to simulate the data and to estimate the parameters: 

1. Generate a random sample of n values from a RW distribution given in the 
model.

2. Modify the simulated random sample to ensure the pcd of left censored 
observations.

3. Obtain and store the estimations 𝛽𝛽"0, 𝛽𝛽"1, 𝛾𝛾'0  and 𝛾𝛾"1  using the proposed  
procedure.

4. Repeat m = 100000 times the steps 1 to 3.

4. Results
In this section, we present the results of the simulation study. For each case, we show 
a figure for the mean and the MSE to explore the evolution of the estimated parame-
ters as n and pcd increase.

Case 1: simulation without covariates

Figure 5 describes the mean of the estimated parameters �̂�𝜇  and 𝜎𝜎"  for different censo-
red percentages and sample sizes n. We can observe that as the sample size increases, 
the mean value of �̂�𝜇  and 𝜎𝜎"  tend to the true value of the parameters represented by 
the red lines. Additionally, we can observe from the figure that as the percentage of 
censored data decreases, there is a lower bias in the estimations of  �̂�𝜇  and 𝜎𝜎" .

 



Statistical model for analizing negative variables with application to compression test on concrete.

12       https://doi.org/10.24050/reia.v19i38.1526

Figure 5. Mean of the estimated parameters µ"	and	σ$ versus n for different  
percentage of censored data. Red lines correspond to the true values  
μ = 0.8 and σ =1.2.

Figure 6 shows the MSE trend for the estimated parameters �̂�𝜇  and 𝜎𝜎"  for each 
value of n. As the sample size increases, the value of the MSE decreases, bringing MSE 
near zero. Additionally, as the percentage of censored data increases, the MSE tends to 
increases.

 
Figure 6. Mean squared error for the estimated parameters µ"	and	σ$ versus n for 
different percentage of censored data.

For both measures, mean and MSE, it can be observed that the estimation is 
different for every censored data. For sample sizes with n < 500, we observed that the 
impact of the censure is significant, being worse for 50% and 30% of censored data; 
for sample sizes with n > 500, the MSE decreases, and the lines begin to overlap.

Finally, from Figure 5 and Figure 6 we observe, as expected, as the n increases 
and/or the percentage of censoring pcd decreases, the estimation of μ and σ tends to 
be closer to the true parameters.

Case 2: simulation with covariates

Figure 7 shows the mean of the estimated parameters 𝛽𝛽"#, 𝛽𝛽"%,	𝛾𝛾(#and	𝛾𝛾(% versus n for 
different percentages of censored data. From this figure, we observe a general pattern, 
as the sample size increases, the estimations tend to the true values.
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The censure seems to have a slight effect on the estimations, except for the cur-
ves associated with β0 and β1 that move away from the true values when the percenta-
ge of censored data is 50%.The estimations for γ0 and γ1 seem not to be affected by the 
percentages of censure. Additionally, the oscillations for each curve tend to decrease, 
even for the estimations of γ1. Last, the percentage of censoring seems only to affect 
the estimations of β0 and β1.

 

Figure 7. Mean of the estimated parameters 𝛽𝛽"#, 𝛽𝛽"%, 𝛾𝛾'# and 𝛾𝛾'% versus n for diffe-
rent percentages of censored data. Red line corresponds to the objective value.

Figure 8 shows the MSE trend of the estimated parameters β0, β1, γ0 and γ1 of 
the regression model for each value of n. As the sample size increases in the panels, 
the value of the MSE decreases, bringing it closer to zero. The error between the real 
values of the parameters and the estimated values is increasingly less. The MSE for 
β_0 decreases quickly because it has less variance than β1, which has much variance, 
especially in the percentages 30% and 50%. Something similar happens with γ0 that 
has less variance than γ1, but for both of them the bias is small causing overlapped 
curves.
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Figure 8. Mean squared error for the estimated parameters 𝛽𝛽"#, 𝛽𝛽"%, 𝛾𝛾'# and 𝛾𝛾'%
versus n for different percentages of censored data. 

In both cases, the behavior of the mean and the MSE are consistent with similar 
simulations using the Weibull distribution made by authors such as Gibbons and 
Vance (1983), Guure and Ibrahim (2012), Guure and Ibrahim (2013), Kim and Yum 
(2008), Kim et al. (2011), Phadnis et al. (2020) and Odell, Anderson, and D’Agostino 
(1992).

5. Application

The study developed by Huang et al. (2019) analyzed the creep behavior of small 
scale concrete specimens under eccentric compression loads. To examine the effect 
of load eccentricity and drying of concrete over time, four 100×100×450 mm con-
crete specimens (prisms) were tested. Specimens DS were used to measure drying 
shrinkage strains, whereas specimens BS were epoxy coated on all faces to examine 
basic shrinkage without concrete drying effects. Figure 9 shows the measured drying 
shrinkage strains (Y) of specimens BS and DS.

 
Figure 9. Measured drying shrinkage strains of specimens BS and DS.
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For both datasets (BS and DS) were fitted models to explain the variable shrinka-
ge strain (Y) in specimens as a function of the time. For each model, four distributions 
were assumed for the response variable: reflected Weibull, log-normal, Generalized 
Inverse Gaussian, and Gamma.

To compare the models we used the generalized Akaike information criterion 
(GAIC) (Akaike, 1983) given by the following:

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑘𝑘 = −2 log 𝑙𝑙- +𝑘𝑘×𝑑𝑑𝑑𝑑,

where 𝑙𝑙" corresponds to the likelihood of the current fitted model, df denotes the 
total degrees of freedom (the effective number of parameters) of the model, and k is 
the penalty for each degree of freedom. Hence, GAIC (k = 2)  gives the Akaike informa-
tion criterion (AIC) (Akaike, 1983) and GAIC (k = log (n)) gives the Schwarz Bayesian 
criterion (SBC) or the Bayesian information criterion (BIC) (Schwarz, 1978). The 
model with the lowest value of GAIC (k) for a chosen value of k is selected as the “best” 
model (Stasinopoulos et al., 2017).

Additionally, we compare the models using the pseudo correlation coefficient 
𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
2

 proposed by Nagelkerke (1991) and the correlation coefficient 𝜌𝜌(𝑌𝑌,𝑌𝑌%) bet-
ween the observed values Y and the estimated mean values 𝜌𝜌(𝑌𝑌,𝑌𝑌%). Table 2 shows the 
measures obtain for each model in the two datasets. From this table, we can observe 
that the model assuming the reflected Weibull distribution was the model with the 
best measures (bold numbers).

Table 2. Measures to compare the models fitted to the BS and DS datasets. Bold 
numbers represent the best values in each column.

 BS dataset DS dataset 

Distribution for ! "#$% &'()*+,-  .(!, !) "#$% &'()*+,-  .(!, !) 
Reflected Weibull 217.62 0.75 0.96 249.03 0.80 0.97 

log-normal 240.31 0.75 0.90 272.83 0.79 0.92 

Generalized Inverse Gaussian 235.61 0.66 0.93 269.92 0.71 0.94 

Gamma 233.61 0.66 0.93 267.92 0.71 0.94 

	

Detailed results for the reflected Weibull models fitted to specimens BS and DS 
are shown in Table 3 and Table 4, respectively. For both models, we found that a 3-de-
gree polynomial of the time (T) is appropriate to explain the parameter μ whereas 
that for the parameter σ we found that no terms are needed.
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Table 3. Estimated effects for the model of specimens BS.

Estimated effects for log(%) 
 Estimate Standard error '-value (-value 

Intercept -23.038 4.072 -5.658 0.000 

)  -9.149 1.755 -5.212 0.000 

)*  5.657 1.441 3.926 0.000 

)+  -3.319 1.264 -2.625 0.017 

Estimated effects for log(,) 
 Estimate Standard error '-value (-value 

Intercept 1.621 0.175 9.266 0.000 

	

Table 4. Estimated effects for the model of specimens DS.

Estimated effects for log(%)  
 Estimate Standard error '-value (-value 

Intercept -34.478 0.552 -66.043 0.000 

)  -9.551 1.518 -6.292 0.000 

)*  6.385 1.739 3.672 0.000 

)+  -4.077 1.534 -2.658 0.016 

Estimated effects for log(,)  
 Estimate Standard error '-value (-value 

Intercept 1.789 0.013 135.100 0.000 

	

With the information in Table 3, it is possible to write the mathematical expres-
sions for the estimated parameters �̂�𝜇  and 𝜎𝜎"  of the RW model of specimen BS. In the 
RW regression model, both parameters μ and σ, must be positive, for this reason, the 
log link function is used in the following expressions:

log �̂�𝜇 = −23.038− 9.149	𝑇𝑇 + 5.657	𝑇𝑇2 −3.319	𝑇𝑇3

	log 𝜎𝜎7 = 1.621

Similarly, using the information in Table 4, it is possible to write the mathemati-
cal expressions for the estimated parameters �̂�𝜇  and 𝜎𝜎"  of the RW model of specimen 
DS:

log �̂�𝜇 = −34.478− 9.551	𝑇𝑇 + 6.385	𝑇𝑇2 −4.077	𝑇𝑇3

log 𝜎𝜎7 = 1.789

Using the fitted models above, we can obtain the expected value E(Y|T = t) for 
the response variable. Figure 10 depicts the observed data (points) and the expected 
values of Y as a function of time for both BS and DS specimens. From this figure, we 
observe that curves follow the experimental data. This fact confirms that both fitted 
reflected Weibull models explain the phenomena.
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Figure 10. Fitted drying shrinkage strains for specimens BS and DS.

6. Conclusions
The RelDists package is an useful tool for the academic, scientific, and business 
communities, because it has functions to achieve probabilities, percentiles, densities, 
and random variates for the RW distribution. Additionally, the RelDists package has 
helpful functions to perform parameter estimations and regression models. These 
characteristics allow users to do reliability studies that provide support for decision-
makers.

From the simulation study, we found that the estimations tend to go to the true 
values as the sample size increases, and the percentage of censoring decreases. Addi-
tionally, we found that for large sample sizes, the percentage of censoring seems to 
have less impact over the maximum likelihood estimators. This behavior points out 
that the regression model offers accurate predictions as there is more information 
available.
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