
Parametric Decimal Division using Hardware Description
Language

 Jorge Hernán López1

Johans Restrepo1

Jorge E. Tobón1

Abstract

In this work we describe a fast and high-precision algorithm written in VHDL Hardware Description Language to
perform the division between two_nite decimal numbers, i.e. numbers composed of an integer part and a decimal one,
under the scheme of a fixed point representation. The algorithm proposed is not an approximation one as it is usually
considered. To do so, the size of the bits of the operands can be tunned by means of a couple of parameters N and M, ac-
cording to which the latency of the calculation will depend. The project is _nally sinthesized in a _eld programmable gate
array or FPGA of the type SPARTAN 3E from XILINX.

Keywords: VHDL, FPGA, OPERATION, DIVISION.

División Decimal Parametrizable usando Lenguaje
de Descripción de Hardware

Resumen

En este trabajo se describe un algoritmo rápido y de alta precisión escrito en el lenguaje de descripción de hardware,
VHDL para realizar la división entre dos números decimales, es decir, los números compuestos por una parte entera y
una decimal, bajo el esquema de una representación de punto fijo. El algoritmo propuesto no es una aproximación, como
se hace en la mayoría de los casos, escogiendo el algoritmo según la necesidad propia, en tiempo o en área de lógica.
Para ello, el tamaño de los bits de los operandos se puede ajustar mediante un par de parámetros N y M, según los cuales
dependerá la latencia del cálculo. El proyecto se sintetiza finalmente en una matriz de puertas programables o FPGA del
tipo SPARTAN 3E de XILINX.

Palabras Clave: Palabras cables: VHDL, FPGA, OPERACIÓN, DIVISIÓN.

1 Universidad de Antioquia. Instituto de Física. Medellín, Colombia.

Revista EIA, ISSN 1794-1237 / Año XVII/ Volumen 17/ Edición N.33 / Enero-junio 2020 /Reia33016 pág. 1-6
Publicación semestral de carácter técnico-científico / Universidad EIA, Envigado (Colombia)

DOI: https://doi.org/10.24050/reia.v17i33.1318

Historia del artículo:
Artículo recibido: 12-V-2019/ Aprobado: 15-I-2020
Disponible online: 06 de abril de 2020
Discusión abierta hasta septiembre de 2021

Autor de correspondencia: López Botero, J.H. (Jorge Hernán):
calle 14 # 10-25, La Unión, Antioquia. Teléfono: oficina:
2195635. Cel.: 3113506643. Correo electónico: jhernan.
lopez@udea.edu.co

2

Parametric Decimal Division Using Hardware Description Language

 Revista EIA Rev.EIA./ Universidad EIA

Divisão decimal paramétrica usando a linguagem de descrição
de hardware

Resumo

Neste trabalho descrevemos um algoritmo rápido e de alta precisão escrito na linguagem de descrição de hard-
ware, VHDL, para realizar a divisão entre dois números decimais, ou seja, os números compostos por uma parte inteira
e uma parte decimal, sob o esquema de um representação de ponto fixo. O algoritmo proposto não é uma aproximação,
como é feito na maioria dos casos, escolhendo o algoritmo de acordo com a própria necessidade, no tempo ou na área
lógica. Para isso, o tamanho dos bits do operando pode ser ajustado por um par de parâmetros N e M, dependendo de qual
dependerá a latência do cálculo. O projeto é finalmente sintetizado em uma matriz de portas programáveis ou FPGA do
tipo SPARTAN 3E da XILINX.

Palavras -chave: VHDL, FPGA, OPERAÇÃO, DIVISÃO.

1. Introduction

From the four basic arithmetic operations,
namely addition, substraction, multiplication and
division, the only one not implemented up to now
in FPGA arrays as a built-in or primitive function
is division. In that sense, it is not considered as a
primordial operation despite of being essential part
of more elaborated functions like averages, statistical
analyses, digital processing of signals and images,
algorithms or simulations, etc. This is the reason why
the division as algorithm is based on multiplication, an
operation with a higher hierarchy, which in turn involves
approximation methods. More concretely, division
appears in programing languages as a high expensive
operation and very time consuming. In FPGA devices,
this operation has been addressed in different ways by
using for instance repeated operations of substraction
[1], Taylor series [2], iteration of multiplications [3],
or by means of some algorithms like the Goldschmidt
algorithm [4], the CORDIC one [5], or the Vedic method
[7], etc. Every single attempt is based on approximation
methods involving their own errors, which in turn, in
the process of minimizing them, more hardware surface
or more iterations are needed resulting in a greater
computational cost. Moreover, such algorithms are
designed for a particular numerical representation and
a change in the representation of an output implies a
redesign of the corresponding HDL module.

According to this, a new arithmetic module to
perform divisions under the scheme of a fixed point
representation is proposed.

2. Fixed Point Representation

In the fixed point representation of a decimal
number, two integers parameters M and N are used. The
former stands for the size or number of bits used for
representing the integer part whereas of parameter N
is that corresponding for representing the decimal one.
As long as our problem concerns to the division between
two decimal numbers, the result or quotient is another
decimal number where the residue is not included in
the operation.

For a glance, we can consider the problem of
writing the number 17,345 with a word of 24 bits
where 8 bits are dedicated for representing the integer
part, i.e. M = 8 and therefore N = 16 bits are reserved
for the decimal part. Thus, the binary representations
of the integer and decimal part are respectively 1710=
000100012 and 0,34510 = 0,01011000010100012.
According to the parameterization chosen (M=8 y
N=16), the complete number can be written as follows:
17,34510 = 00010001,010110000101100012. At this point
we have to stress that the binary representation of the
example, does not correspond exactly to 17,345 but to
17,3449859619140625. On this regard, the difference
is however smaller than the less significative bit of the
decimal part, i.e.:

3 ISSN 1794-1237 / Volumen 17 /Número 33 / Enero-Junio 2020 / Reia33016 pág. 1-6

Jorge Hernán López, Johans Restrepo, Jorge E. Tobón

3. Algorithm

The algorithm mimics the way as division is
taught in primary schools. To visualize the method in a
clear way, we can consider first the division between
two integer numbers (decimal base) B ÷ A where B is the
dividend and A is the divisor. Division implies:

B = A * Q + R (8)

 Where Q is the quotient and R is the remainder,
both of them integers. The algorithm for division
proceeds as follows:

1. By starting from the most significative digit
in the dividend, a number of digits equals to those
contained in the divisor is taken. If the corresponding
number is smaller than the divisor, an additional digit
in the dividend is considered.

2. The integer corresponding to the number of
times the divisor is contained within the dividend is
computed. Such a number is then multiplicated by the
divisor and the result is then substracted from the one
taken in the dividend in the previous step. The difference
is stored from right to left, and at the end, such a
number resulting from concatenation corresponds to
the quotient.

3. To the result of every substraction in the
previous step, the most significative digit of the dividend
is added to the less significative digit of the substraction
and the iteration proceeds to step 2 until the divisor
contains no more digits.

Analogously, the steps to compute a division
between two binary numbers B ÷ A are:

1. Identification of the size of divisor. To do that,
zeros located at the left of the binary number are deleted,
i.e. the amount of bits having the divisor after the first
most significative bit equals to ‘1’ is counted and the
result is carried to a register W.

2. The most significative part of the dividend,
with a size equals to that of the previous register W, is
then taken to another register S.

3. The substraction of the two registers is carried
out:

C = S – W (9)

|17,345-17,3449859619140625| ≤2 –16 (1)

0,0000140380859375≤0,0000152587890625 (2)

In order to optimize the number of bits can be
allocated for the different operands in the division,
a maximum size of 2M + N bits either for dividend or
quotient was reserved whereas for the divisor a size of
M + N bits was considered.

Therefore, the maximum decimal value can take
either the dividend or the quotient is:

�
2M–1

� , �
 N

� (3)� 2m �2–n

m=0 n=1

By adding the integer and decimal parts, it is easy
to show that such a number corresponds to:

22M+N–1
 (4)

2N
Analogously, for the divisor, we have:

�
M–1

� , �
 N

� (5)� 2m �2–n

m=0 n=1

which corresponds to the following number:

2M+N–1
 (4)

2N
In any case, the maximum resolution of the

operation depends only on the amount of bits needed
for the decimal part as follows:

δE = 2–N (7)

It must be stressed that such a resolution does
not depend on the hardware surface neither on the
execution time as it occurs with other methods.

Parameters M and N are programmed from the
GENERIC platform of the designed entity and their
initial values must be entered before implementing
the module. Such parameters allow to the programmer
to make a design of the module according to the
needs. Here, it must be stressed that in practice, every
single calculation has particular conditions about the
numbers participating in the operation, and hence every
particular process has its own range and resolution.

4

Parametric Decimal Division Using Hardware Description Language

 Revista EIA Rev.EIA./ Universidad EIA

4. The register C is evaluated in such a way that
if C ≥ 0 then the result corresponding to C is assigned
to S and concomitantly a logic ‘1’ is concatenated to the
right to a new register Q. Otherwise, if C ≤ 0, a logic ‘0’
is concatenated to the right to Q.

5. The next most significative value of the register
of dividend is concatenated to the right of register S and
the process returns to step 3. Iteration finishes when the
register of the dividend does not contain any more bits.

In the case the divisor is equal to zero, an error
signal is activated indicating the operation can not be
performed and the process ends up. The algorithm
presented is designed for positive numbers, however the
module can be employed to work with negative numbers
by adding a process which makes the conversion to
positive numbers, and at the end, the correct sign is given
according to the conventional rule of product of signs.

4. FPGA Implementation

The division algorithm was implemented using
an FPGA Spartan 3E-500 of XILINX [8]. The hardware
surface used, concretaly the amount of flip-flops and
Look-Up Tables (LUT), depends on the selected values
for the parameters M and N.

Figure 1 reveals a closely linear dependence of
the hardware surface resources as the integer part M of
the divisor increases by keeping constant N.

Figure 1. Logical resources measured in Flip-Flops units
as a function of the parameter M at a constant value N =2

Analogously, the parameter M was kept constant
whereas the parameter N was varied. the resultant
behavior, which is also of a linear type, is shown in
Figure 2.

Figures above show how the use of bigger
numbers entails a greater logical surface in the FPGA
when no tool is used to decrease such area. On the
other hand, the latency of the calculation is 3(M+N)
clock cycles, which means the maximum frequency the
algorithm can operate can range between 75 MHz and
80 MHz depending on M and N values. Such a frequency
can be even higher by using the tools provided by the
executing platform of the HDL language, which in this
case corresponds to ISE-XILINX.

Figure 2. Logical resources measured in Flip-Flops units
as a function of the parameter N at a constant value M=7

The corresponding flowchart implementation
for division in the FPGA can be observed in figure 3. In
the state S0, when the variable Enable is activated, the
registers Dividen_int and Divisor_int are loaded with
the entries DIVIDEND and DIVISOR respectively. In
state S1 the size of divisor is calculated whereas in the
following state S2, the register S is loaded with the most
significative part of Dividen_int and of the same size as
Divisor_int. In state S3the value Divisor_int is substracted
from S and the result is stored in register R. In state S4
the value of R is analyzed in such a way that if R ≥ 0,
concatenation of a logical ‘1’ to the right of register Q is
performed. Otherwise, if R < 0, concatenation is carried
out with a logical ‘0’. Such a concatenation takes place
in state S5.

5 ISSN 1794-1237 / Volumen 17 /Número 33 / Enero-Junio 2020 / Reia33016 pág. 1-6

Jorge Hernán López, Johans Restrepo, Jorge E. Tobón

Finally, in state S6, concatenation to the right of
register S is made with he following most significative
value of Dividen_int. The process stops when no more
digits of Dividen_int are available, calculation ends up
and the result is recorded in register Q. This las step
corresponds to state S7.

Figure 3. Flowchart for the division algorithm implemented
in an FPGA gate array

5. Conclusions

The parameterization property of the algorithm
allows the designer to instantiate a module that suits

his own needs. Knowing the maximum values that the
numbers to be divided can take, the value of the param-
eter M (integer part of the number) can be chosen, while
the value of N (decimal part of the number) is taken by
taking into account the desired resolution in the result.

The module presented also works to perform the
operation between integers, in that case, an output is
added to the module, Residue, containing the last recorded
value of register S (Figure 3). If the division is exact the
value of the residue is zero. Configured in this way, the
module can be used to calculate the module operation.

The designed algorithm allows a higher preci-
sion computation than the modules that are based on
approximation algorithms. In our algorithm the error
depends on the resolution chosen, while in others, the
error depends on the number of times the iteration
is done or the number of operations, in any case, in
order to achieve the same resolution, more hardware
surface of logical elements or greater processing time
are required.

Implementation in the FPGA was done without
the use of path or área minimization tools, so the pro-
gram can be optimized even more by reducing either
the work area or the physical paths of the signals, or
by increasing the frequency at which the FPGA clock
can operate.

The algorithm can be pipelined, which will in-
crease logical needs, but it reduces the operation time
even to a clock cycle, which is useful when the processing
time is critical.

Finally, we used the Simulink software from Mat-
lab and Modelsim. Different divisions were simulated at
random and the results obtained were compared with
the results of the operation, always keeping the error
less than or equal to the resolution chosen.

Acknowledgements

Support provided by the CODI-UdeA project 2016-
10085 and the exclusive dedication UdeA program to
one of the authors (J. R) is acknowledged.

References
A. H. Karp, P. Markstein, High Precision Division and

Square Root, ACM Transactions on Mathematical

6

Parametric Decimal Division Using Hardware Description Language

 Revista EIA Rev.EIA./ Universidad EIA

Software (TOMS), Vol.23(4), pp.561589, 1997. DOI :
10.1145/279232.279237

T. J. Kwon, J. Draper, Floating-Point Division and Square
Root Implementation Using a Taylor-Series Expansion
Algorithm With Reduced Look-Up Tables, Proc. 51st
Midwest Symp. Circuits Syst., pp. 954957, 2008.

DOI: 10.1109/MWSCAS.2008.4616959

H. Nikmehr, B. Phillips, and C. C. Lim, A novel Implementa-
tion of Radix-4 Floating-Point Division Square-Root
Using Comparison Multiples, Computers and Electrical
Engineering, vol. 36(5), pp. 850863, 2010.

DOI: 10.1016/j.compeleceng.2008.04.013

R. Goldberg, G. Even, and P. M. Seidel, An FPGA Implemen-
tation of Pipelined Multiplicative Division With IEEE
Rounding, 15th Annual IEEE Symposium on Field
Programmable Custom Computing Machines FCCM,
pp. 185196, 2007.

DOI: 10.1109/FCCM.2007.59

S. Pongyupinpanich, F.A. Samman, M. Glesner and S. Sing-
haniyom, Design and Evaluation of a Floating-Point
Division Operator Based on CORDIC Algorithm, Electri-
cal Engineering/Electronics Computer Telecommuni-
cations and Information Technology (ECTI-CON), 9th
International Conference on, pp. 1618, 2012.

DOI: 10.1109/ECTICon.2012.6254331

A. J. Thakkar, A. Ejnioui, Pipelining of Double Precision
Floating Point Division and Square Root Operations,
Proceedings of the 44th Annual Southeast Regional
Conference On ACM-SE 44, Melbourne, Florida, 2006.

DOI: 10.1145/1185448.1185555

D. Rutwik, V.S. Kanchana. Low Power Divider Using Vedic
Mathematics. IEEE, Advances in Computing, Commu-
nications and Informatics. 2014 International Confer-
ence on, 2004.

DOI: 10.1109/ICACCI.2014.6968436

www.digilentinc.com

F. Adamec, T. Fryza, Binary Division Algorithm and Imple-
mentation in VHDL, Proceedings of 19th International
Conference Radioelektronika 2009, pp. 8790, 2009.

DOI: 10.1109/RADIOELEK.2009.5158757

J. Liu, M. Chang and C. Cheng, An Iterative Division Algo-
rithm for FPGAs, Proceedings of the 2006 ACM/SIGDA
14th international symposium on Field programmable
gate arrays California, USA, 2006.

DOI:10.1145/1117201.1117213

M.D. Ercegovac and R. McIlhenny, Design and FPGA Imple-
mentation of Radix-10 Algorithm for Division with

Limited Precision Primitives. Proc. 42nd Asilomar
Conference on Signals, Systems and Computers, 2008.

DOI: 10.1109/ACSSC.2008.5074511

S. F. Oberman and M. J. Flynn, Division Algorithms and
Implementation, IEEE Trans. On Comp, vol. 46, pp.
833854, 1997.

M. Franke, A. T. Schwarzbacher and M. Brutscheck, Imple-
mentation of Different Square Root Algorithms, Proc.
6th IEEE Electron. Circuits Syst. Conf., pp. 103106,
2007.

PARA CITAR ESTE ARTÍCULO /
 TO REFERENCE THIS ARTICLE /

PARA CITAR ESTE ARTIGO /

López, J.H.; Restrepo, J.; Tobón, J.E. (2020). Parametric
Decimal Division Using Hardware Description Language.
Revista EIA , 17(33) enero-junio, Reia33016 pág. 1-6.
Disponible en: https://doi.org/10.24050/reia.v17i33.1318

