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Abstract— Fast and accurate computation of the Euclidean distance map transformation is presented using the python 
programming language in conjunction with the vtk and itk toolkits. Two algorithms are compared on the basis of their efficiency 
and computational speed; Saitho algorithm and Danielsson’s four-points Sequential Euclidean Distance (4SED). An algorithm is 
used to compute a scalar distance map from a 3D data set or volume, which can be used to extract specific distance values. The 
performance time for the Saitho computation speed was less than the Danielsson’s 4SED computation allowing a faster calculation 
of the Euclidean distance map. A software analysis application was implemented using the Saitho algorithm for the computation of 
the scalar distance maps; it also included an underlying segmentation method to allow the computation of Euclidean distance maps 
on micro-CT images of segmented bone structures. In the future, this application could be used in conjunction with other image 
processing software applications of bone analysis.

Keywords— Euclidean distance map, Euclidean distance transformation, Image segmentation.

Resumen— Se implementó una aplicación utilizando el lenguaje de programación Phyton y las librerías ITK y VTK para un 
cálculo rápido y preciso de la transformada Euclidiana de distancia. Se compararon dos algoritmos, el propuesto por Saitho y el 
algoritmo de Danielsson en la versión four-points Sequencial Euclidean distance (4SED). Se evaluó la precisión y la velocidad 
computacional de ambos algoritmos, encontrando que la versión propuesta por Saitho es más rápida. Se implementó una aplicación 
de software para el cálculo de la transformada Euclidiana de distancia, incluyendo herramientas para la segmentacion de imágenes 
de micro-CT de estructuras óseas. A futuro esta aplicación puede ser usada en conjunto con otros software para análisis de imágenes 
en el procesamiento de estructuras oseas. 
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I. Introduction

Distance transformations are powerful image analysis 
tools able to map on a volume dataset, in the case of 

the Euclidean distance transform (EDT), a distance map 
that contains the closest distance of a pixel on an object of 
interest to any pixel in the background or in the case of the 
signed EDT, the closest distance of any voxel to a voxel or 
sets of voxels of interest [1].

Distance transformed computations have a vast area of ap-
plication within medical imaging processing, especially for 
registration in orthopedic surgery and biomechanical stud-
ies of joints [2-4]. Current in vitro and clinical intervention 
studies reveal little information on potential modifications of 
soft tissue due to injury or disease. This is being overcome 
by novel techniques that use computation of distance maps 
on in vivo bone modeling and noninvasive studies of articu-
lations using computed tomography (CT).
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In the field of colon endoscopy, current methods for 
computation of the centerline of a colon from Computed 
Tomographic Colonography (CTC) are time-consuming 
and tedious [5]. This is due to the fact that current tech-
niques depend on the successful tracking of a navigation 
system through the colon. To overcome this difficulty, the 
center line computation of the colonic lumen is calculated 
extracting local maxima in a distance map of the segment-
ed colon lumen, and then local maxima is used to compare 
and link connection criteria from the Euclidean distance 
between maximums, as shown in previous studies [5].

Application of distance transform computation in the 
area of pattern recognition [6] and artificial intelligence 
systems [7] have been proposed in the past. A Kohonen 
neural network is trained using typical features of the sub-
classes in a learning set by means of a shortest Euclidean 
distance algorithm. The study describes the use of a Ko-
honen map in the classification of renal diseases as be-
ing glomerular or tubular aiming to assist nephrological 
decision-making.

New promising fields of applications of distance 
transformations have emerged from results of previous 
studies, as in the case of an intra-operative navigational 
guidance for computer-integrated orthopedic surgery [4]. 
In this context, the algorithm used to compute the dis-
tance transformation has to provide reasonable calcula-
tion time without loss of accuracy in the distance calcu-
lation. To reach this objective, several strategies for the 
computation of distance maps are used. The first strategy 
is to use local transformations, which assume that the cor-
responding distance value of a pixel can be deduced from 
the values of its neighbors. But this is not exactly true for 
the computation of the Euclidean distance transform so 
that these methods lead only to approximations of the ex-
act transformation. This is the case of Danielsson’s four-
point Sequential Euclidean Distance mapping or 4SED 
algorithm, which falls in this category of approximate 
algorithms [2].

For the computation of the exact Euclidean transform, 
other methods are necessary. The existing algorithms can 
be basically classified in three categories. Parallel and se-
quential propagation, raster-scanning and contour-pro-
cessing algorithms [2]. Raster-scanning algorithms and 
propagation methods are used by the Saitho algorithm. 
This algorithm has been proven to be the fastest exact Eu-
clidean distance transform for general purpose computers, 
although its computational cost is highly image dependent 
and its complexity can reach n3 for n x n images [8].

A Graphical User Interface (GUI) was developed that 
implements the Saitho algorithm for the computation of 

Euclidean distance scalar maps, using the unsigned ver-
sion of the Saitho algorithm, with the python program-
ming language and the VTK and ITK toolkits. The 
software application allows the user to manage SunVi-
sion volume file format (vff) datasets, to segment bone 
structures from micro-CT mice images using threshold-
ing with global and local voxel criteria, and region-grow-
ing techniques based on manually selected seed. This is 
an approach to a possible application of image analysis 
software for the computation of euclidean distance maps 
of binary images of segmented mouse bone structures in 
micro-CT datasets.

II. Materials and methods

Materials

Datasets with isotropic voxel spacing of 1.0 mm and 
0.154 mm, and medium sized datasets with voxel di-
mensions ranging from 2003 to 4003 were used. SunVi-
sion volume file format (vff) micro-CT datasets of mouse 
were used to test bone segmentation tools of the appli-
cation.  Synthetic vffs volume datasets were also used, 
consisting on binary objects of different geometries as a 
cube, a sphere and a cylinder-sphere as a more compli-
cated structure. 

Methods

	 A. Segmentation

Segmentation tools provide the user with a multi-step 
approach for segmentation of bone tissue from other soft 
tissue. The main reason for including a segmentation tool 
in the GUI is because the authors are interested in the ap-
proach to the computation of Euclidean distances maps 
of segmented mouse bone structures of micro-CT datas-
ets. Current methods involve the use of global and local 
thresholding criteria as a previous step before the region 
or seed-growing algorithm is applied to a CT volume da-
taset for bone segmentation [9, 10].

We have selected a three steps segmentation method 
that uses a mixture of global and local criteria for the 
computation of the region-growing algorithm. Our meth-
od can be understood as follows: the user, based on com-
monly CT values that are labeled as bone, selects the first 
global threshold, setting up the voxel value of those pix-
els to be segmented, that we called the “black in” voxel 
value, so that a first version of the binary output image 
is obtained. Then, the region-growing algorithm is com-
puted using local statistics on the 26-voxel-neighborhood 
region. The selection of seeds is based on intensity �������values 



63Cristina Gallego. Image analysis with euclidean distance fields.

of voxels that are bone but that were not segmented using 
the first step of global thresholding. The region-growing 
algorithm includes those voxels V(x, y, z) whose intensi-
ties are inside the interval:

	            	 (1)

Where m is the mean and σ is the standard deviation 
of the intensity levels found in the neighborhood region of 
the voxel seeds, and f is a factor of inclusion voxel criteria. 

A final step of the segmentation is based on the addi-
tion of multiple seeds, to allow the algorithm to select vox-
els from other regions that have not been included in the 
first iteration of the region growing step.

	 B. Computation of the Euclidean distance transform

The computation of the distance transform is orga-
nized into several modules, which separate the pre-pro-
cessing, segmenting and binary thresholding stages. The 
output of a stage is intended to be the input of the next 
stage, which gives the user the possibility to integrate all 
techniques necessary for the computation of the distance 
map, since the input datasets should be binary datasets.

A segmentation tool was developed using global and 
local thresholding and region growing techniques, as a 
necessary pre-processing stage to apply the distance trans-
formation to segmented-bone CT datasets.

The computation is done over a binary image were the 
convention is to differentiate voxels as being target voxels 
and background voxels. A diagram representing the main 
steps necessary for the computation of the Euclidean dis-
tance is shown in Fig. 1.

Fig. 1.  Diagram representation of the workflow of information needed 
to compute the Euclidean Distance Transformation. Steps b) and c) are 
relative to the input image, if segmentation is required step b) should be 
used and the output will be binary. If segmentation is not needed, step 
c) follows step a) for binary thresholding.

C. Comparison of Saitho and Danielsson (4SED) 
algorithms

For the comparison of Saitho and Danielsson (4SED) 
algorithms, two types of tests were performed: accuracy 
and computational time tests. The accuracy test consisted 

on matching an extracted iso-distance from each distance 
map. Using the synthetic vffs volume datasets, these iso-
distances were extracted and compared using specificity 
and sensibility tests in relation to a countour of an object 
of the same size of the evaluated iso-distance. The compu-
tational time test took into consideration the period of time 
spent for each algorithm to perform a given task.

The reason for this is to compare the accuracy of both 
versions of the distance transform when performing the task 
of computing a fixed distance. This iso-distance is then con-
verted to a binary contour to be compared with each other.

For the extracted iso-distances from the map, a test was 
performed using the following criteria, where value dataset 
correspond to the exact version using Saitho’s algorithm, 
and prediction dataset correspond to the approximate Dan-
ielsson’s algorithm:

If value{i, j, k} = 1 and prediction{i, j, k} = 1:
TP = value is true positive.
if value[i, j, k} = 1 and prediction{i, j, k} = 0:
FP = value is false positive.
if value{i, j, k} = 0 and prediction{i, j, k} = 0:
TN = value is true negative.
if value{i, j, k} = 0 and prediction{i, j, k} = 1:
FN = value is false negative.

In this context, accuracy is calculated from derived 
quantitative measurements of classified voxels as being 
true positives, false negatives, true negatives or false posi-
tives. With these measurements, specificity and sensitivity 
were also derived. 

III. Results

A. Comparison of Saitho and Danielsson (4SED) 
algorithms

An accuracy test was computed on synthetic vffs vo-
lumes consisting of binary objects such as a cube and a 
sphere. Fig. 2 shows the graphs of the receiving operating 
characteristics (ROC) spaces derived from the test.

The results for each test are ploted to a ROC spa-
ce as shown in Fig. 2. The results of the comparison of 
the equally extracted iso-distances 1, 5, 10, and 20 (in 
pixel units) from both implementations of the distance 
map calculation are summarized on Table 1, where it is 
clear that the average difference between both versions 
is 0.1%.
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Table 1. Summarized results from the accuracy test of the implementation of both algorithms. Abbreviations: True Positives (TP), 
False Positives (FP), True Negatives (TN), False Negatives (FN), Total (TP + FP + TN + FN), True Positive Rate (TPR) and False 
Positive Rate (FPR).

a) Data Set Object: Cube. Number of pixels tested: 8000000
Pixel units iso-1 iso-5 Iso-10 iso-20

(TP) 33750 35550 35550 35550
(FP) 0 0 0 0
(TN) 7966250 7964450 7964450 7964450
(FN) 0 0 0 0
Total 8000000 8000000 8000000 8000000

Specificity (%) 100.0 % 100.0 % 100.0 % 100.0 %
Sensitivity (%) 100.0 % 100.0 % 100.0 % 100.0 %

(TPR) 1.0 1.0 1.0 1.0
(FPR) 0.0 0.0 0.0 0.0

Accuracy (ACC) 100.0 % 100.0 % 100.0 % 100.0 %

b) Data Set Object: Sphere. Number of pixels tested: 800000
Pixel units iso-1 iso-5 Iso-10 iso-20

(TP) 26438 7904 2502 2214

(FP) 0 46 0 0

(TN) 7973562 7991847 7997494 7997786

(FN) 0 203 4 0

Total 8000000 8000000 8000000 8000000

Specificity (%) 100.0 % 99.999% 100.0 % 100.0 %

Sensitivity (%) 100.0 % 97.499 % 99.840 % 100.0 %

(TPR) 1.0 0.975 0.998 1.0

(FPR) 0.0 5.756e-06 0.0 0.0

Accuracy ACC) 100.0 % 99.997 % 99.999 % 100.0 %

c) Data Set Object: segmented-Bone. Number of pixels tested: 23592960
Pixel units iso-1 iso-5 Iso-10 iso-20

(TP) 116060 35819 9220 3426

(FP) 0 267 16 1

(TN) 23476900 23556386 23583685 23589533

(FN) 0 448 39 0

Total 23592960 23592960 23592960 23592960

Specificity (%) 100.0 % 99.999% 99.999 % 99.999 %

Sensitivity (%) 100.0 % 98.656 % 99.579 % 100.0 %

(TPR) 1.0 0.986 0.996 1.0

(FPR) 0.0 1.1336e-05 6.784e-07 4.239e-08

Accuracy (ACC) 100.0 % 99.997 % 99.999 % 99.999 %

B. Computational time test

The volume data sets specifications are summarized 
in Table 2, and the respective time for the computa-
tion of the Euclidean distance transform is presented. 
The computational time, which was acquired using a 

timer, is the period of time that takes for each computa-
tion to be performed and obtained using the developed 
application.
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Table 2. Data sets “size” and corresponding “voxel size” in each dimen-
sion x, y, z. Time performance of each implemented algorithm for the 
three data sets described in Table 1. The time is given in minutes (‘) and 
seconds (‘’).

Data Set Cube_75 Sphere_50 Segmented_bone
Size (pixels) 200x200x200 200x200x200 256x256x360
Voxel size (pixels) 1,1,1 1,1,1 0.154, 0.154, 0.154
Danielson 2’14’’ 2’18’’ 6’49’’
Saitho 0’5’’ 0’7’’ 0’24’’

Fig. 2.  Accuracy test using the exact version of the Euclidean distance 
Transform computation as reference. This test was performed to find 
the extent of similarity of the 4SED and Saitho’s algorithms. 

C. Segmentation:

The results of the segmentation of a micro-CT dataset 
of a mouse are shown in Fig. 3. Fig. 3 a) shows the visu-

alization of initially segmented bone using a global thresh-
old value. This initial segmentation is a parcial version of 
the complete bone structure. This is due to the fact that 
only high intensity values are selected on a global thresh-
olding operation, which will probably select the interior of 
the bones. This is the main reason why segmenting bone 
structures on micro-CT images datasets requires additional 
methods besides global thresholding. Region growing al-
gorithms with local statistics computations as described on 
the methods section allows those other pixels on the bound-
ary of bones to be segmented, because with the proposed 
method voxels are not only being segmented using intensity 
value criteria of each voxel separately, but considering the 
intensity of its neigborgs. As a result, the segmentation pro-
cess only takes place if the information extracted from the 
neighbor voxels are within a range of statistical confidency. 
In Fig. 3 b) the outcome of the region-growing algorithm is 
visualized using the voxel V(88, 86, 261) as a seed.

Fig. 3. Results from the segmentation tools. (a) step 1: Visualization 
on bone tissue voxels using global threshold values. The first version 
of the segmented image is visualized as the set of red color voxels. (b) 
step 2: Outcome of the region-growing algorithm where additional red 
color voxels represent the grown region of step 1. This process can be 
repeated selecting proper seeds. 
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D. GUI tool:

A view of the main GUI interface can be appreci-
ated in Fig. 4. The software operates by modules, so 
that the user can concentrate in specific tasks with-
out losing the overall computation of the distance 
transform. 

Fig. 4. Results from the developed GUI for the computation of the Euclidean distance map of an image dataset. 
The operation of the GUI is done through user interaction with the interface.

Fig. 5 a) binary convention for the computation of the Saitho Euclidean distance algorithm: object voxel values 
are zero, and background voxels are different than zero. b) for Dannielsson 4SED algorithm the convention as-
signs object voxel values to be different than zero and background voxels as zero, which is exactly the opposite 
from Saitho’s algorithm.

A tool for the computation of the binary image is avail-
able and allows the preprocessing of the dataset to the de-
sired binary representation. Fig. 5 shows the results for the 
preprocessing step to the distance transform calculation. 
The flow of information between modules or stages in the 
computation of the transformation is shown in Fig. 6.
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Fig. 6. Schematically flow of information for the computation of the Euclidean distance Transform. The image is 
binaryzed based on the convention of the algorithm before computation is performed. At the end the extraction 
of an iso-distance or contour from the scalar distance map is acquired.

IV. Discussion

The results of the comparison of Saitho’s and Daniels-
son 4SED algorithms have shown that there is no consid-
erable difference between the extracted iso-distances that 
were computed using the exact version (Saitho’s algo-
rithm) and the ones extracted from the approximate ver-
sion (Danielsson’s 4SED algorithm), though variations are 
observed between datasets that have different geometry 
configuration. The highest accuracy in the whole range 
of evaluated iso-distances was for the cube dataset object 
(100% in 4 cases), for the sphere dataset object and the 
segmented-bone dataset. The average accuracy in the four 
cases was lower than 100% by only 0.1% and 0.125%, for 
the sphere and the segmented-bone datasets, respectively.

The computational time results from the performance 
test or what is called the computational cost of each ver-
sion shows that for all datasets that were analyzed, the 
Saitho algorithm allows the fastest computation, as stated 
in the reviewed literature. This computational time test, re-
vealed that in fact, the time required for the computation 
of the Euclidean distance transform in all datasets is im-
age-size dependent, which also agrees with previous work 
in this field [9]. 

Other algorithms have been proposed to compute the 
signed Euclidean distance [8], or a faster version by propaga-
tion using multiple neighborhoods and bucket sorting [10]. 
These approaches could be evaluated in the future for cases 
where the signed map or a faster computation is needed.

Previous studies on the implementation of the Euclid-
ean distance transforms suggest that an efficient computa-
tion can be reached just by modifying the approximate al-
gorithms with the use of masks applied iteratively over the 
image (Yamada’s EDT) or by morphological operations 
(Shih & Michel) [2]. The Saitho’s algorithm was selected 
for implementation in this work based on a comparison of 
the Danielsson’s four-point Sequential Euclidean distance 
mapping or 4SED algorithm and the Saitho exact algo-
rithm implementations that was carried-out by means of 
an accuracy test and computing time test. This consider-

ation did not take into account the possibility of using a 
modified version of Danielsson aproximate algorithm as 
proposed by other authors, because the performance of the 
exact version on Saitho’s algorithm overheaded the perfor-
mance of Danielsson’s both in time and accuracy.

Regarding to the segmentation tasks, there are several 
methods used by others authors. The simple region-grow-
ing algorithms as described by Kang, Engelke et al. 2003 
[9, 10], use global criteria to label voxels, but this usually 
leads to inexact results when complex structures are to be 
segmented. An improvement of this method is the use of 
neighborhood statistical computations as criteria of voxel 
inclusion in the segmented set of voxels as validated by 
Wang, Greenspan et al. 2006 [11, 12]. 

V. Conclusion

The computation of the Euclidean distance map trans-
formation was showed to be feasible using the python 
programming language in conjunction with the vtk and itk 
toolkits. Both algorithms compute a scalar distance map 
from a 3D data set or volume, which can be used to ex-
tract specific distance values. The performance time for the 
Saitho computation was better than for the Danielsson’s 
4SED, allowing a faster calculation of the Euclidean dis-
tance map. There are two major components in the image 
analysis software program developed: the underlying seg-
mentation method and the computation of the Euclidean 
distance map transformation, so that this application could 
be extended in the future to be used in conjunction with 
other image processing software applications.
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