
57Diaz C. et al. Algorithms for laparoscopic surgical simulators

Revista Ingeniería Biomédica
ISSN 1909-9762, volumen 4, número 8, julio-diciembre 2010, págs. 57-70
Escuela de Ingeniería de Antioquia-Universidad CES, Medellín, Colombia

General algorithms for laparoscopic surgical simulators
Christian Diaz1,Ψ, Helmuth Trefftz2, Jorge Bernal3, Steven Eliuk4

1PhD candidate, Virtual Reality Laboratory, EAFIT University, Medellin, Colombia
2Associated Professor, Virtual Reality Laboratory, EAFIT University, Medellin, Colombia

3Director, Laparoscopic Surgery Research Group, CES University, Medellin, Colombia
4PhD candidate, Advanced Man Machine Interface Laboratory (AMMi), University of Alberta, Edmonton, Canada

Received November 25, 2010. Accepted December 29, 2010

Algoritmos generales para simuladores de cirugía laparoscópica

Abstract— Recent advances in fields such as modeling of deformable objects, haptic technologies, immersive technologies,
computation capacity and virtual environments have created the conditions to offer novel and suitable training tools and learning methods
in the medical area. One of these training tools is the virtual surgical simulator, which has no limitations of time or risk, unlike conventional
methods of training. Moreover, these simulators allow for the quantitative evaluation of the surgeon performance, giving the possibility to
create performance standards in order to define if the surgeon is well prepared to execute a determined surgical procedure on a real patient.

This paper describes the development of a virtual simulator for laparoscopic surgery. The simulator allows the multimodal
interaction between the surgeon and the surgical virtual environment using visual and haptic feedback devices. To make the
experience of the surgeon closer to the real surgical environment a specific user interface was developed. Additionally in this paper
we describe some implementations carried out to face typical challenges presented in surgical simulators related to the tradeoff
between real-time performance and high realism; for instance, the deformation of soft tissues are simulated using a GPU (Graphics
Processor Unit) -based implementation of the mass-spring model. In this case, we explain the algorithms developed taking into
account the particular case of a cholecystectomy procedure in laparoscopic surgery.

Keywords— Medical training, Minimally invasive surgery, Surgical simulation, Virtual reality.

Resumen— Recientes avances en áreas tales como modelación computacional de objetos deformables, tecnologías hápticas, tecnologías
inmersivas, capacidad de procesamiento y ambiente virtuales han proporcionado las bases para el desarrollo de herramientas y métodos de
aprendizaje confiables en el entrenamiento médico. Una de estas herramientas de entrenamiento son los simuladores quirúrgicos virtuales,
los cuales no tienen limitaciones de tiempo o riesgos a diferencia de los métodos convencionales de entrenamiento. Además, dichos
simuladores permiten una evaluación cuantitativa del desempeño del cirujano, dando la posibilidad de crear estándares de desempeño con
el fin de definir en qué momento un cirujano está preparado para realizar un determinado procedimiento quirúrgico sobre un paciente.

Este artículo describe el desarrollo de un simulador virtual para cirugía laparoscópica. Este simulador permite la interacción
multimodal entre el cirujano y el ambiente virtual quirúrgico usando dispositivos de retroalimentación visual y háptica. Para hacer
la experiencia del cirujano más cercana a la de una ambiente quirúrgico real se desarrolló una interfaz cirujano-simulador especial.
Adicionalmente en este artículo se describen algunas implementaciones que solucionan los problemas típicos cuando se desarrolla un
simulador quirúrgico, principalmente relacionados con lograr un desempeño en tiempo real mientras se sacrifica el nivel de realismo
de la simulación: por ejemplo, la deformación de los tejidos blandos simulados usando una implementación del modelo masa-resorte
en la unidad de procesamiento gráfico. En este caso se describen los algoritmos desarrollados tomando en cuenta la simulación de un
procedimiento laparoscópico llamado colecistectomía.

Palabras clave— Entrenamiento médico, cirugía mínimamente invasiva, simulación quirúrgica, realidad virtual.

Ψ	 Dirección para correspondencia: cdiazleo@eafit.edu.co

58 Revista Ingeniería Biomédica

I. Introduction

Since mid-1980, the introduction of the compact
CCD (Charge Coupled Device) camera made

the laparoscopic surgery feasible allowing its quick
introduction in the everyday medical surgical procedures.
Due to its promising results, such as shorter recovery time
and less risk of infection, it was widely adopted.

Soon, the demand to execute these procedures in
clinical practice increased and surgeons were expected to
adopt these procedures. This adoption can be possible due
to the simplicity of some pioneer procedures in this new
surgical area. However, the creation of new procedures
with greater complexity and the technical risks, present
in these innovative surgical tasks, leads the surgeon to
make the mistakes and cause injuries in the patient during
execution of these surgical procedures. For example, in the
extraction of the gallbladder, an incorrect interpretation
of the anatomy can result in an injury of the bladder duct.
The treatment of this injure is complicated and sometimes,
it requires a second surgical intervention [1].

The training process for laparoscopic surgery is
currently based on a combination of several techniques
of training and education, for example, training manual
skills in real surgeries supervised by an expert, using live
animals or in-vitro models based on synthetic materials,
and training cognitive skills using informative CD’s,
videos and books. These techniques have disadvantages
such as expensive prices, the high risk for the patient,
limited time to train, low realism of the simulation of the
real human anatomy, amongst others. These disadvantages
limit the efficacy of the training method, therefore
increasing the surgeon’s stress level and decreasing his
creativity to innovate creating new procedures [2].

The advances of new technologies in fields such as
physical simulation of deformable objects and virtual
environments have created the conditions for virtual
surgical training systems to meet all key elements required
to obtain an efficient outcome. The virtual laparoscopic
simulators have no limitations of time, or risk unlike
conventional methods of training, which could further
jeopardize the health and even the lives of patients.
Moreover, these simulators can reproduce the real human
anatomy with greater accuracy, including pathologies and
anatomical variations, which the surgeon can face up in
a real procedure, and that are difficult to simulate using
other training techniques. For example, in the conventional
training method the trainee must wait for one patient with
the pathology in order to be able to train it.

This paper presents some of the algorithms required
to develop a virtual simulator of laparoscopic surgery.
The simulator allows the multimodal interaction between

the surgeon and the surgical virtual environment using
visual and haptic feedback devices. In order to make
the experience of the surgeon closer to the real surgical
environment, a specific user interface was developed. In
this case, we explain the algorithms developed taking into
account the particular case of a cholecystectomy procedure
in laparoscopic surgery [3].

The rest of the paper is organized as follows: Section
2 describes similar projects. Section 3 describes each
component developed in the surgical simulator. Section
4 and 5 describes the obtained results and the discussion.
Finally, section 6 describes the conclusions reached so far
and the future work.

II. Related work

Due to the limitations of the medical area to
train surgical procedures of high complexity and the
technological advances in the informatics technology,
biomechanics modeling and virtual environments during
the mid-90’s, several research groups around the world
pursued projects to develop virtual environments in
order to train surgeons in minimally invasive surgery.
In this way, several projects have been carried out in the
surgery simulation area with a broad range of medical
applications, such as: laparoscopic surgery [4,5],
virtual endoscopy [6], arthroscopy [7], microsurgery
[8], extraction of colon tumors [9], intraocular surgery
[10], amongst others. These different simulators have
demonstrated the utility of the virtual simulators in
medical training.

The development of surgical simulators has demanded
advances in different research topics, which have
contributed to the development of surgical simulators with
high realism and real-time performance. In particular,
there are four research topics, each of which has reviews
dedicated summarizing the research steps followed by the
scientific community. These topics include: deformable
objects simulation [11], collision detection [12],
simulation of topological changes [13] and design and
development of simulator-surgeon interfaces [14].

Specifically, in the development of simulators to train
the cholecystectomy procedure several approaches have
been taken [15], applying the algorithms and methods
developed in the research topics mentioned before.
Moreover corporations dedicated to develop and market
surgical simulators have created training systems for these
types of procedures [16]. Yet, the relatively high prices,
and low flexibility of these simulators, are limiting factors
that hinder their successful application in the training of
laparoscopic surgeons in developing countries such as
Colombia.

59Diaz C. et al. Algorithms for laparoscopic surgical simulators

In the present paper we describe the development of
a surgical simulation system to train basics tasks and the
cholecystectomy procedure, proposing different algorithms
and hardware designs in each of four topics previously
described.

III. Materials and methods

In order to simulate a basic surgery environment it
is necessary to determine the surgical procedure to be
simulated. In the surgical education field a procedure
that is frequently used as the first step of training is the
cholecystectomy [3]. This procedure is ideal to train the
skills in a trainee for the follow reasons:

-	 The surgeon just needs a basic anatomical and
physiologic knowledge of the anatomical structures that
take active part in the procedure.

-	 The procedure allows the manipulation of the organs
and tissues using several instrument types. It demands
the trainee to become familiar with the surgical
instrumental.

-	 The workspace in which the trainee moves the
instruments is not very small when compared with
other procedures.

-	 The step sequence to carry out the procedure is not very
complex.

-	 In the laparoscopic surgery field this procedure is the
most frequently executed and improved.

In the next sections we describe the development of
each component of the surgical simulator.

3.1 Anatomical Model

All surgical simulators should have an anatomical model
of the part seen by the surgeon. In our case, the surgical
simulator developed will be composed for two different
training environments. The first simulates a basic surgical
task such as transport objects using the surgical instruments.
The second simulates an environment to execute a basic
surgical procedure. In this paper we focus on describing the
development of second training environment.

The cholecystectomy is a surgical procedure to
extract the gallbladder. The surgeon has to interact with
two different organs, the liver and the gallbladder. Still,
there are other structures such as a common bile duct,
which must be modeled also. This duct plays a main role
in the cholecystectomy procedure because it has to be
cut and sealed before extracting the gallbladder. For this
reason a tridimensional model of the liver, gallbladder
and associated structures should be created to develop
a simulation of this procedure. In [17] the way how the
liver and gallbladder are interconnected with the other
structures is described in more detail.

To generate the tridimensional model, we used the
images provided by the Visible Human project [18,19].
From these images we carried out a process composed
of two stages. The first stage consists of the extraction of
the contour from the anatomical structure, i.e. the liver
or gallbladder, in each of the images that compose its
volume. The second stage consists of a tridimensional
reconstruction process using the contours provided by the
first stage. Each stage is composed by several processing
steps, Fig. 1 shows the complete process.

Fig. 1. Scheme of the process followed to reconstruct the anatomical structures. The process is composed by two stages, the first one to extract the
contours and the second one for the tridimensional reconstruction using the contours obtained in the first stage. The first stage requires that the user
selects some control point in the contour of the anatomical structure in the image.

60 Revista Ingeniería Biomédica

	 3.1.1. Contour Extraction

The segmentation methodologies for the extraction of
contours of the anatomical structures can be classified on
three types of algorithms: the automatic, semi-automatic
and manual. Considering the methodologies mentioned
above, we have chosen to pick a semi-automatic strategy,
which gives us precision and flexibility, with a little user
intervention when compared with manual methodologies.
Next we will describe the methodology proposed.

Fig. 2 shows the processing steps involved with the
methodology proposed to extract the contour. First the user
has to select some points, called control points, located
over the contour of the organ. Second the application
adapts the points defined by the user to the contour, using
edge detection methods. Third the application interpolates
the points adapted applying the spline cubic method.
Fourth if the contour interpolated does not correspond
correctly to the contour of the organ because it is very
irregular, the application solves it dividing the splines in
several segments. Finally, the application applies a flood-
fill algorithm to define the area delimitated by the contour.

	 3.1.2 Generation of the Tridimensional Mesh

The methodology proposed to create the
tridimensional mesh of the organ is based on the

Marching Cubes algorithm. Using the areas determined
in the first stage we built a volumetric set of points that
describe the volume of the organ. From these points we
define a volumetric cell in which if the cell corresponds
to a point of the organ, its values is equal to a number
different of zero. This volumetric cell is the input of the
marching cubes algorithm to create the tridimensional
mesh, and it use the number mentioned before as a
threshold to calculate the mesh. Additionally, in order
to improve the quality of the mesh, we apply decimation
and smoothing algorithms after applying the marching
cubes [20].

3.2 Soft Tissue Deformation

	 3.2.1 Mass-Spring Model

We applied the mass-spring method to simulate the
deformation of the tissues and organs in the surgical
simulator. The soft-tissue simulation engine used a
quasi-static solver, which is appropriate for heavily
damped tissues, and ignores velocity and damping
forces in return for significantly improved performance
[8]. In this way we just take the elastic part of the
equation that describes the behavior of deformable
objects. This simplification results in,

Fig. 2. Scheme that describes the process followed to extract the contour on each picture composing the liver in the Visible Human data set.

61Diaz C. et al. Algorithms for laparoscopic surgical simulators

where,

Fij (xi , xj) = kij Δij uij

and

Δij = lij – rlij

In these equations kij is stiffness constant associated
with a link between nodes Ni and Nj , Δij is the current
length of the link minus its resting length, and uij is the
unit vector pointing from nodes Ni toward Nj .

After defining the mathematical model, the next step is
to determine the method to solve the equations system. In
this system, we have n equations where n is the number
of nodes, it correspond a linear system of n equations
with n unknown variables. The unknown variables are the
positions of each node in the mesh. The application and
solution of the model can be observed in the following
algorithm:

Acquire the position of the each node

While time < δ then

For each i ϵ I 	

xi ← xi – 1αfi

End For

End While

where time is the elapsed time, δ is an interval of time
predefined and α is a convergence factor of the solution
method. To solve the model, we use the iterative schema
proposed in [8].

	 3.2.2 Boundary Conditions

Besides defining the deformation model and setting
out a method to solve it, we have to determine the
boundary conditions of the model. These boundary
conditions depend on the surgical procedure simulated.
Our deformation model have three types of boundary
conditions to each node: (i) the first one is a free node,
in which the behavior of the node is governed by the
equations mentioned before, (ii) the second one is a node
subject to an external force, for example when the surgical
instrument push an organ or tissue, in this case │Fi

ϵxt │>0

and (iii) the third one is a node with a predefined position,
for example when a surgical instrument grabs a part of the
organ or tissue. In this case the positions of nodes grabbed
are equal to the position of the instrument tip.

It is therefore necessary to define the boundary
conditions for each particular surgical procedure in order
to faithfully reproduce the anatomical conditions of the
real environment. In our case the following conditions
were defined for the cholecystectomy procedure:

- 	 The nodes located in the anterior and superior
diaphragmatic face of the liver are fixed to its rest position
due of the contact with the abdominal wall and diaphragm.

- 	 The nodes located in the division of the right lobe and
left lobe are fixed due to the action of the falciform
ligament.

- 	 The nodes located in the superior diaphragmatic face
of the liver are fixed due to the action of coronary
ligament.

- 	 The nodes located in the posterior face of the gallbladder
are fixed to some nodes of the visceral face of the liver.

For simplification purposes, other boundary conditions
of some additional ligaments are not accounted for. Other
boundary conditions like the contact with gastric structures
are not simulated due to the absence of these structures in
the simulation environment.

	 3.2.3 Shape Conservation

A main characteristic that all physical models should
simulate to add realism to the deformation behavior is
the volume conservation of the anatomical structures.
When we use mass-spring models and surface mesh this
property is not guaranteed, even with a volumetric mesh
this condition is difficult to satisfy. Recent research has
proposed solutions to this problem using the mass-spring
model and superficial mesh [21]. However, the proposed
methods are computationally expensive. To avoid these
problems we propose to add a virtual spring to each node
in the mesh. This virtual spring is linked to the rest position
of the node before the simulation starts. Although this
method does not guarantee the volume conservation of
the structure, it guarantees a relative conservation of the
shape of the organ, giving some realism to the simulation.
Also, the property of the anatomical structure to come
back to its rest shape after being exposed to a deformation
phenomenon is defined by a stiffness constant of the virtual
spring. Fig. 3 shows the configuration of the virtual springs
in order to guarantee the preservation of the mesh shape.
In the figure kvirtual is the stiffness constant of the springs;
pstart is the start position of a node that has not suffered a
deformation; and m is the mass associated with each node.

62 Revista Ingeniería Biomédica

Fig. 3. Topological setup of the virtual springs to guarantee the conservation of the shape using the mass-spring mode

boundary condition of the each point. The second
array called Neighbors has the neighbors of each point
in the mesh and the third array called Length Rest
contains the length rest of each link in the mesh. In
this implementation the data structure is stored in the
global memory of the GPU. To decompose the problem
each thread in GPU computes the new position of
a point in the mesh. For meshes with a large number
of points, this approach can offer a great performance
improvement, due to the high parallelization achieved
in the calculation. However, the use of global memory
to store the data structure may limit the performance
by this approach due to high latency of reading and
writing to global memory on the GPU. To solve this
problem, three additional approaches were considered:
coalescence memory, shared memory and shared
memory + coalescence memory.

- 	 Coalescence Memory Implementation: By performing
a simple modification of the data structure described
before, it is possible to improve the performance of the
algorithm implemented on the GPU. To this end, it is
necessary to apply the concept of coalescence memory.
Coalesced memory refers to property that the global
memory of the GPU has been arranged in a way to
allow memory access to the same DRAM (Dynamic
Random Access Memory) page when multiple
threads simultaneously access contiguous elements of
memory [23]. For that reason, and in order to exploit
this property of the global memory, the data structure
described before was slightly modified, simply by
organizing all information that will be accessed at the
same time for each thread in a consecutive way in the

	 3.2.4 GPU-based Implementation of the Mass-
Spring Model

The largest computational task in surgical simulators
is that of simulation of the deformation of the anatomical
structures. In recent years, the advent of programmable
graphical processing unit (GPU), has allowed for the
use of the computational power for General-Purpose
Computing on the Graphics Processing Unit (GPGPU),
such as calculating the deformation of anatomical
structures in the surgical simulator [22]. Due to the
above reasoning, and the high degree of parallelization
possible within the calculation of the mass-spring model,
these methods are a perfect candidate to be implemented
on the GPU. In this way to get better performance using
the processing capacity of the GPU, we explore a GPU-
based implementation using the mass-spring model
and applying the CUDA (Computed Unified Device
Architecture) library. CUDA allows storing the data used
in the processing in three different kinds of memory of
the graphics device, depending on the memory used the
performance of the implementation could be better. In
[23] is described and compared the different kinds of
memory of the graphic device supported by CUDA. Next
we describe the approaches implemented in the GPU to
calculate the deformation using four different memory
setups in order to store the data structure of the mesh.

- 	 Global Memory Implementation: The data structure
used in the GPU implementation consists of three
1D arrays which are linked by the position of each
point in the array. The first array called Positions
contains the geometric coordinates, the mass and the

63Diaz C. et al. Algorithms for laparoscopic surgical simulators

memory. This schema ensures that the coordinates x,
y and z, the masses, boundary conditions, neighbors
of each point and the rest length of each spring are
consecutively stored in memory.

- 	 Shared Memory Implementation: Other option for
improving the performance of the algorithm is to use
the shared memory of the GPU, which has writing
and reading latency that is less than that of the global
memory [23]. The idea of this approach is to copy
the positions of points from the global memory to
shared memory. Exploiting the characteristics of a
neighborhood and in this way to minimize the accesses
made to the global memory. However, this is only
applicable if the information contained in the array
is structured, i.e. if the neighbors of a specific point
within the array, are also neighbors in the geometry of
the mesh. Changes to the data structure are basically
focused on how the neighbors of each point are stored.
In this case the index is the position of a point in the
array of points. In the new data structure each point has
maximum eight neighbors, and to determine if there is
a connection with each of these neighbors, values of
0 and 1 are used, where 1 refers to a connection and
0 otherwise. Regarding the changes of the algorithm,
each thread of the block reads a point of the mesh and
is copied to shared memory, but for the calculation it
is necessary to have access to the coordinates of the
points around the block some threads of the block must
copy these in addition to all positions.

- 	 Shared Memory + Coalescence Memory
Implementation: Finally, the last implementation
carried out, took advantage of the benefits in terms
of performance offered by shared memory and the
property of coalescence memory. For this purpose we
combined the data structures used in each approach.

In [24] there are more details about the GPU
implementation of the mass-spring model using CUDA.

3.3 Collision Detection

Quick collision detection between a rigid object
and a deformable object can be implemented applying
several techniques, for example, it is possible to compute
the distance between two objects applying spatial
decomposition using voxels. However, one of the methods
currently used in surgical simulation, is based on the use
of a hierarchy of bounding volumes of different types, for
instance spheres [25], AABB’s (Aligned Axis Bounding
Boxes) [26], OBB’s (Oriented Bounding boxes) [27],
among others.

The hierarchy of bounding volumes consists basically
in creating a hierarchy of several levels of bounding

volumes that cover the object, in our case the liver or the
gallbladder. For example, in a binary hierarchy, the first
level consists on a coarse bounding volume that contains
all the organ, in the second level other two bounding
volumes contain half of the organ and so on, until arriving
at level n in which the bounding volumes contain the
minimum primitive of the mesh, in our case a triangle.

However, in the methods mentioned above, the
precision of the outcome depends on the following factors
(i) type of bounding volume used, (ii) the adaptation
to the object’s shape by the bounding volume and (iii)
the computational cost of the test performed to detect
the collision. The algorithm proposed for the surgical
simulator is based on the approximation of the closest
of the most distant triangles, it allows to forgetting the
overlap and fitting problem of the bounding volumes.

The proposed algorithm is composed by three parts:
The first one consists in building the hierarchy. The second
one consists in searching for the zone of possible collision
between two triangles of different meshes, in our case the
mesh of the organ and the mesh of the surgical instrument.
The third one consists of updating the hierarchy in order
to reflect the deformation suffered by the object when
it is exposed to the effect of external forces such as the
interaction with other anatomical structures or surgical
instruments.

Next we describe the some basic concepts and the
three parts of the proposed collision detection method.

	 3.3.1 Overview of the Algorithm

The triangle is the minimum primitive that can
compose the mesh of the objects in the surgical simulator.
For simplicity and accuracy purposes, we represent every
triangle in the mesh using a point; it is the intersection
of the angle bisectors, that is, the center of the triangle’s
incircle. This point is called the triangle’s centroid. For any
triangle its centroid will always be located inside it.

In order to describe the algorithm for building,
searching and updating the hierarchy, we use the following
notation:

- 	 U0 denotes the universe of valid triangle’s centroids that
compose the organ.

- 	 Ni =│Ui│denotes the size of Ui , which is a subgroup of U0 .

- 	 Ci ϵ Ui and is a centroid point.

-	 Ui and Uk are two subgroups of Ut where Ut is the
parent of Ui and Uk, and Ui U Uk = Ut and Ui ∩ Uk = ϕ.

- 	 The function d:X x X → R denotes the distance
between two points (if the distance is small, the points
are close).

64 Revista Ingeniería Biomédica

	 3.3.2 Building the Hierarchy

Taking into account the above notation, the proposed
algorithm to build the hierarchy is described as follows:

Load Hierarchy (Ut)
	 If Nt > 1 then
		 Divide Ut in Uk and Uj

		 Does Ut father of Uk and Uj

		 Load Hierarchy (Uk)
		 Load Hierarchy (Uj)
	 End if

End Load Hierarchy

In this way to divide Ut in Uk and Uj, the algorithm
searches the two point Ck and Cj farthest between in Ut
using this definition

d (Ck , Cj) = max (d (Ut))
 t

where t is the index of group analyzed in that instant.
Based on this criterion, we proceed as follow to define the
content of the hierarchy:

For each Ci in Ut – {Ck ,Cj }do
	 If d(Cj , Ci) > d(Ck , Ci) then
		 Include Ti in Uk

	 Else If
		 Include Ti in Uj

	 End if
End For

3.3.3 Searching in the Hierarchy

After building the hierarchy, we can search the
triangles with a possible collision, applying this algorithm:

Search Collision (U0 , T)

	 Usearch = U0

	 While Usearch > 1 do

		 If d(T, C1) > d(T, C2)
			 Usearch = Uk

		 Else if
			 Usearch = Uj

		 End if
	 End While
	 Find the triangle Tr refer to Usearch

	 Find the triangle Tc belong to T
	 Return if there are collision between Tr and T
End SearchCollision

where Usearch is the group of points where the search is
happening and Tr is the triangle reference of the point T.

3.3.4 Updating the Hierarchy

Due to the fact that the proposed hierarchy does
not use bounding volumes to detect the collision
between objects and it just uses points and calculates the
distance to detect the collision, the process of update the
hierarchy consist in recalculating the intersection point
of the medians of each triangle taking the vertex of the
modified triangle. The following algorithm presents the
methodology used to update the hierarchy.

Update Hierarchy (Ut)
	 For each Cj that Cj ϵ ListModified

		 Recalculate Cj

	 End For
End UpdateHierarchy

Where ListModified is a list with the centroid of the
triangles that suffer some deformation. The update
approximation is bottom-up, that is, the nodes of the
hierarchy are recalculated beginning with the leaf nodes
and finalizing with the root node.

3.4 Architecture of the Simulator

The surgical simulator is a complex system composed
by several components that interact amongst them. These
components are controlled to achieve the real-time
performance necessary to accomplish the requirements
of the interactivity with the user. In the Fig. 4 we can
observe the global architecture of the surgical simulator
developed.

Fig. 4. General Architecture of the surgical simulator describing the
interaction of the components.

65Diaz C. et al. Algorithms for laparoscopic surgical simulators

In general, the developed surgical simulator is
composed by three components: the physical user
interface, the graphical user interface and the simulation
core. The first component, the physical user interface
is composed by the mechanical device, it allows the
movement of the instruments in a way similar to a real
surgical procedure, the spatial position tracking device
of the surgical instruments, the hardware to measure
the opening of the instruments and finally the force
feedback devices (Phantom Omni). The interaction
between the Phantom Omni and the simulation core is
accomplished by the Open Haptics software library,
and to grant the real-time performance of the simulator
we have to use a temporal model of the virtual object
interacting with the user. The temporal model is just a
segment of the mesh determined using the collision zone,
it includes geometrical and physical information in order
to calculate the deformation of the mesh and the force
feedback in the segment.

Given that the temporal model contains a reduced
subset of the complete mesh, we can achieve the
computation of the deformation and the force feedback
with an approximate performance of 600 Hz. The second
component, the graphical user interface, uses the OpenGL
library to visualize the virtual environment and GTK
(GIMP Toolkit) to implement a GUI environment to allow
the user to interact with menus, buttons and edit textboxes
to setup the simulator. The third component, the core
simulation, implements the necessary algorithms to detect
the collisions between objects in the virtual environment,
the implementation of the physical model to calculate the
deformation and the visualization module to show the state
of the virtual environment.

3.5 Simulator-Surgeon Interface

In a surgical simulator the physical interface plays an
important role. The movements of the instruments and the
feedback of the different perceptions must be similar to the
real life counterparts. This guarantees a correct transfer of
the skills from the virtual to the real surgical environment.
We analyzed the movements executed by the surgeon
during a laparoscopic surgical procedure and found that
in a real laparoscopic procedure, instruments have four
degrees of freedom, and it is enough to locate the tip of the
instrument in the working space.

The physical interface was designed and built to satisfy
the mobility requirements of the instruments and to allow
adapting the measurement devices such as the haptic
devices and the electromagnetic tracker. For this reason, we
do not use magnetic materials (metals), since they would
distort the electromagnetic field and then the measurement
of the instrument position would be incorrect. Fig. 5 shows
the physical interface built for the interaction between the
user and the surgical virtual environment.

On the other side, the physical interface of the surgical
simulator should measure the degrees of freedom of
each surgical instrument so that it can be visualized in
the surgical simulator. In this way, an electromagnetic
Polhemus tracker is adapted to the instruments of the
physical interface to measure three degrees of rotation
and one of translation. In order to measure the opening
of the instruments, we developed a hardware based on a
potentiometer link to the handle axis of the instrument.
This potentiometer is integrated with a digital-to-analog
conversion circuit and a special chip to execute the USB
communication with the surgical simulation core.

Fig. 5. Physical interface designed for the user to interact with the surgical virtual environment. (A) shows the integration of the physical interface
with the haptic devices and electromagnetical tracker. (B) shows the bottom view of the interface, in which is located the electronic board to
measure the opening of the instruments.

66 Revista Ingeniería Biomédica

Finally, there are two haptic devices linked to the tip
of the instrument to provide force feedback of the virtual
environment to the user.

IV. Results

To evaluate the implemented surgical simulator, we
tested the performance of each algorithm proposed in the
previous sections. Next we describe the results obtained
during each test carried out.

4.1 Experimental Test Collision Detection

The experimental test to evaluate the performance of
the search algorithm for collision detection was to take

the time required by the algorithm to perform the search
and determine the triangle which was in collision with the
tip of the instrument, evaluating different mesh sizes. The
test was carried out in Dell XPS machine, with 2 GB RAM
and processor Intel Core2Duo. In Fig. 6 we can observe
the results obtained.

Similarly, the update algorithm was evaluated. In
this case we calculated the time that the algorithm took
in order to recalculate the centroid of each triangle, and
update the farthest points of each of the nodes in the
hierarchy. In the Fig. 7 we can observe the results obtained
respect to the updated of the hierarchy for meshes of
different sizes.

Fig. 6. Results obtained during the test to evaluate the performance of the search algorithm for the collision detection.

Fig. 7. Results obtained during the test to evaluate the performance of the update algorithm for the collision detection.

67Diaz C. et al. Algorithms for laparoscopic surgical simulators

4.2 Experimental Test GPU-based implementation of the
Mass-Spring Model

In order to compare the sequential and GPU algorithms
proposed for the mass-spring model, an experimental test
was developed. In the test two performance variables were
measured, time execution and speed-up. The simulation
was composed by a triangular mesh. We used four meshes
with different sizes (Table 1). In order to conduct the
experimental test, a perturbation on the physical model of
the mesh, produced by an external force, was applied. For
the implementation in the GPU, the tests were conducted
using a fixed block size for the different resolution meshes.
The experimental test was carried out in a machine with a
Nvidia GeForce 8800 GT GPU.

Table. 1. Characteristics of the meshes used in the experimental test.

Name Triangles Edges Points
Mesh 1 450 704 256
Mesh 2 24642 37184 12544
Mesh 3 61250 92224 30976
Mesh 4 85698 128960 43264

Fig. 8 presents the results of the execution time
obtained for each of the approaches described before
versus the number of points that possess each of the
meshes evaluated.

Additionally, Fig. 9 shows the speed-up achieved for
each of the approaches and meshes evaluated during the
experimental tests.

Fig. 8. Time execution for each one of meshes evaluated for GPU-based approaches.

Fig. 9. Speed-up for GPU approaches, using meshes of different sizes.

68 Revista Ingeniería Biomédica

4.3 Experimental Test Shape Conservation

To evaluate the effectiveness of the proposed method
for preserving the shape of objects after they suffered
a deformation phenomenon, we made a pilot test in
which a mesh suffered a deformation caused by gravity.
Evaluating different values of stiffness constant of the
virtual springs, were determined the difference between
the position of the nodes initially and after have suffered
a deformation. The different was calculated using the
follow expression:

where error0
shape refer to the error calculated

using k=0. Table 2 shows the results obtained for this
experimental test.

Table. 2. Results obtained in the experimental test to evaluate the
proposed method of the shape conservation. For this test we used the
following constants: a = 0.1 and k mesh = 0.002

k virtual diff Shape k

0 100
0.00002 98.76
0.0002 89.20
0.02 18.46
0.05 11.54
0.09 8.53
0.2 5.67
0.3 4.62
0.5 3.56
0.7 3.01
1 2.51

4.4 General Performance Test

The developed system simulates a cholecystectomy
procedure with an appropriate degree of realism and in
real-time. Preliminary tests to analyze the skills transfer of
the surgeon lead us to anticipate the success of the surgeon
training using this surgical simulator as training tool [20].
Also, the proposed architecture results in a performance of
the graphics interface up to 60 Hz and the haptic interface
up to 600Hz. Fig. 10 shows the surgery environment
simulated by the system.

On the other side, the preliminary analysis of
the physical interface and the anatomical generated
model carried out with expert surgeons has given a
positive comments about the interaction and the virtual
environment of simulation, however we must carry out
experimental tests to measure the level of skills transfer
achieved with real surgical procedures.

Fig. 10. Cholecystectomy procedures simulated using the system
developed.

V. Discussion

We faced several challenges during the development
of the surgical simulator for a specific procedure as the
cholecystectomy; among the most important are the need
to guarantee the real-time performance and a suitable
realism of the simulation. In order to meet all requirements
it is important to develop efficient algorithms in each
component of the simulator and to design an architecture
that guarantees the real-time at any moment.

The generation of an anatomical model that fulfills
the morphologic requirements and additionally facilitates
the mapping to the physical model to guarantee the
correct behavior of the anatomical structures was a highly
complex process. During the extraction of the contours
and the tridimensional reconstruction of the anatomical
structures using the images of the visible human project,
we faced two problems: respect to the complexity of the
mesh, that is, the large number of primitives and the stair
effect consequence of the inaccuracy of the segmentation
method of the contours. These two problems were solved
applying decimation and smoothness algorithms of the
tridimensional mesh. The size of the meshes generated
for the deformable anatomical structures such as the
gallbladder (1798 triangles) and the liver (5132 triangles)
were suitable for visualization purposes and allowed us
to achieve a real-time performance without affecting the
realistic anatomical appearance of the structures.

In our case, the collision detection algorithm is simple
when compared to the interaction necessary in a surgical
simulator. In our approach, we do not detect collision
between meshes, but collisions between a triangle and a
mesh, that is, the deformable organ is modeled like a mesh
but the surgical instrument is modeled using a triangle of
its tip. Although there are situations during the simulation

69Diaz C. et al. Algorithms for laparoscopic surgical simulators

where the realism is affected by this simplification, for
example when an instrument tube overlaps some organ
or tissue, this simplification allowed us to improve the
performance of the search and update algorithm in the
hierarchy. Observing the figure 6 and figure 7 we can
conclude that the search and updating process can be
done by ensuring the real-time of the simulation, since
the time it takes to execute the two processes for meshes
of approximately 4000 triangles, is 3 ms. Also, the use of
hierarchies based on distances and not bounding volumes
avoids problems related to the adaptation of the bounding
volume to the geometrical characteristics of the mesh.

The use of a physical simulation engine concentrated
in the local behavior of the organ-instrument interaction,
allows for several simplifications to guarantee the real-
time performance without affecting the realism of the
simulation.

However, for meshes with a large number of nodes
such simplifications may not be enough. In this case the
benefits of implementing the model mass-spring on the
GPU, can ensure real time despite the number of nodes
that have the mesh. This result is visible by analyzing
figure 9 where the speed-up of the GPU algorithms can be
observed. In this case, the higher speed-up was obtained
with the implementation on the GPU that combines the
use of shared memory and the property of coalescence
memory. However, the methods that use shared memory,
need a structured mesh to be implemented, this limits
the implementation of such methods to only those with a
structured mesh. The coalesced memory approach is very
flexible since it can represent arbitrary geometry, and is
the simplest strategy to be implemented. Moreover, from
figure 8 it is possible to conclude that, if it is necessary to
simulate the deformation of meshes with up to 43K points
for real time applications, the best option is to apply the
approaches that use the GPU, since these can provide
for a computation time less than 16ms, and obtain an
approximate update frequency of 60Hz. This frequency
guarantees the interactivity of the simulation in a real-time
surgical simulator.

Considering the use of virtual springs in the mass-
spring model to conserve the rest shape of the anatomical
structures can be an indirect form to conserve volume if
there is not a rigid body transformation over the structures.
Table 2 shows the effect of the error kshape when we
modified the stiffness constant of the virtual springs,
as is expected the error was small when the stiffness
constant was big. However if we use a big virtual stiffness
constants, we can modify the normal physical behavior
of the mesh. In our simulation, applying the quasi-
static method solver, considering the size of the organs
reconstructed, we achieved the equilibrium of the model in

each frame using a α = 0.1 and a δ = 20ms, with an error
below to 0.0005.

On the other side, the design of the physical interface
to interact with the virtual environment in laparoscopic
surgery procedures impose the fulfillment of the
requirements inherent to the application as the mobility
of the instrument and technical requirements related
with the integration of the haptic feedback and position
tracking devices. Special articulated mechanisms had to
be designed to fulfill these design criteria. Preliminary
user test comparing the use of the interface during the
execution of a basic training task have submitted a positive
evaluation of the developed interface [20].

Finally, the use of a temporal model to solve the
problem of the update rate difference between the haptic
and graphic loop guarantee stability in the force perceived
by the user.

VI. Conclusion

The proposed surgical simulator offers a solution
to satisfy every technical requirement demanded for a
simulation system; in this case the procedure simulated
is the cholecystectomy, providing a suitable visual and
haptic feedback to the user. However, the system presented
requires additional research in each of the developed
components to improve the interactivity and the realism of
the simulator.

Future work includes research in four directions
specifically. The first one consists in the development of
dataset to allow the simulation of anatomical variations
and pathologies of the anatomical structures mentioned
before. The second one is the study and implementation
of an algorithm that allows the volume conservation using
mass-spring models and surface mesh, as the proposed in
[21]. The third one refer to add algorithms to simulate the
cut and application of surgical staples in order to allow the
complete interaction of the cholecystectomy procedure,
because at the moment the process of cut and location
of staples in the simulator is implemented in predefined
places affecting the interactivity of the simulator. Finally,
we will explore the remote training of surgical procedures
developing a networked surgical simulator.

References
[1].	 Club, S. S. A Prospective Analysis of 1518 Laparoscopic

Cholecystectomies. England Journal Medicine, Volume 16, 1991,
pp. 1073–1078.

[2].	 Tendick , F., Downes, M., Goktekin, T., Cavusoglu, M. C., Feygin
D., Wu, X., Eyal, R., Hegarty, M. and Way, L. W. A Virtual
Environment Test bed for Training Laparoscopic Surgical Skills,
Presence: Teleoperators Virtual Environment. Volume 9, Issue 3,
2000, pp. 236–255.

70 Revista Ingeniería Biomédica

[3].	 Liu, A., Tendick, F., Cleary, K. and Kaufmann, C. A Survey of
Surgical Simulation: Applications, Technology, and Education,
Presence: Teleoperators Virtual Environment. Volume 12, Issue 6,
2003, pp. 599–614.

[4].	 Delingette, H. and Ayache, N. Hepatic Surgery Simulation,
Communications ACM, Volume 48, Issue 2, 2005, pp. 31–36.

[5].	 Laugier, C., Mendoza, C. and Sudaraj, K. Towards a Realistic
Medical Simulator using Virtual Environments and Haptic
Interaction. Robotics Research, Volume 6, 2003, pp. 289–306.

[6].	 Williams, D., Grimm, S., Coto, E., Roudsari, A. and Hatzakis, H.
Volumetric Curved Planar Reformation for Virtual Endoscopy.
IEEE Transactions on Visualization and Computer Graphics
Volume 14, Issue 1, 2008, pp. 109–119.

[7].	 Bayona, S., García, M., Mendoza, C. and Fernández, J. M.
Shoulder Arthroscopy Training System with Force Feedback. In:
MEDIVIS ’06: Proceedings of the International Conference on
Medical Information Visualization–Biomedical Visualization,
IEEE Computer Society, Washington, DC, USA, 2006, pp. 71–76.

[8].	 Brown, J., Sorkin, S., Latombe, J.C., Montgomery, K. and Stephanides,
M. Algorithmic Tools for Real-Time Microsurgery Simulation, Medical
Image Analysis, Volume 6, Issue 3, 2002, pp. 289–300.

[9].	 Raghupathi, L., Grisoni, L., Faure, F., Marchal, D., Cani, M.P. and
Chaillou, C. An Intestinal Surgery Simulator: Real-time Collision
Processing and Visualization. IEEE Transactions on Visualization
and Computer Graphics, Volume 10, Issue 6, 2004, pp. 708–718.

[10].	Wagner, C., Schill, M. and Manner, R.. Intraocular Surgery on a Virtual
Eye. Communications ACM, Volume 45, Issue 7, 2002, pp. 45–49.

[11].	Meier, U., Lopez, O., Monserrat, C., Juan, M. and Alcaiz, M.
Real-time Deformable Models for Surgery Simulation: A Survey.
Computer Methods and Programs in Biomedicine, Volume 77,
Issue3, 2005, pp. 183–197.

[12].	Teschner, M., Kimmerle, S., Heidelberger, B., Zachmann, G.,
Raghupathi, L., Fuhrmann, A., Cani, M., Faure, F., Magnenat-
Thalmann, N., Strasser, W. and Volino, P. Collision Detection for
Deformable Objects. In: Eurographics State-of-the-Art Report
(EG-STAR), Eurographics Association, 2004, pp. 119–139.

[13].	Brown, J., Latombe, J.C. and Montgomery K. Real-Time Knot-
Tying Simulation. Visualization and Computer, Volume 20, Issue
2, 2004, pp. 165–179.

[14].	Salleh, R., Razak, Z., Caldwell, D. and Loureiro, R. Salfsar: A Dual
Purpose Device for Laparoscopic Training and Tele-surgery. Malaysian
Journal of Computer Science, Volume 18, Issue 1, 2005, pp. 78–92.

[15].	Webster, R., Haluck, R. S., Zoppetti, G., Benson, A., Boyd,
J., Charles, N., Reeser, J. and Sampson, S. A Haptic Surgical
Simulator for Laparoscopic Cholecystectomy using Real-Time
Deformable Organs. In: Proceedings of the IASTED International
Conference Biomedical Engineering, IASTED Press, 2003.

[16].	Schijven, M. and Jakimowicz, J. Virtual Reality Surgical
Laparoscopic Simulators. Surgical Endoscopy, Volume 17, Issue
12, 2003, pp. 2041–2042.

[17].	Gunn, C. Using Haptics in a Networked Inmersive 3D
Environment. Ph.D. Thesis, 2007. (Chapter 8 and 9)

[18].	Ackerman, M. and Banvard, R. Imaging Outcomes from
the National Library of Medicine’s Visible Human Project.
Computerized Medical Imaging and Graphics, Volume 24, Issue3,
2000, pp. 125–126.

[19].	Juanes, J., Prats, A., Lagndar, M. and Riesco, J. Application of
the Visible Human Project in the Field of Anatomy: A Review.
European Journal of Anatomy, Volume 7, Issue 3, 2003, pp.
147–159.

[20].	Diaz, C., Posada, D., Trefftz, H. and Bernal, J. Development
of a Surgical Simulator to Training Laparoscopic Procedures.
International Journal of Education and Information Technologies,
Volume 2, Issue 1, 2008, pp. 95–103.

[21].	Hong, M., Jung, S., Choi, M.H. and Welch, S. W. J. Fast
Volume Preservation for a Mass-Spring System. IEEE
Computer and Graphics Applications, Volume 26, Issue 5,
2006, pp. 83–91.

[22].	Sorensen, T. S. and Mosegaard, J. An Introduction to GPU
Accelerated Surgical Simulation. In: M. Harders, G. Szekely
(Eds.), Third International Symposium, ISBMS 2006, Vol.
4072 of Lecture Notes in Computer Science, Springer Berlin /
Heidelberg, 2006, pp. 93–104.

[23].	Hwu, W.-M., Rodrigues, C., Ryoo, S. and Stratton, J. Compute
Unified Device Architecture Application Suitability. In:
Computing in Science and Engineering, Volume 11, Issue 3, 2009,
pp. 16–26.

[24].	Diaz, C., Eliuk, S., Trefftz, H. and Boulanger, P. Simulating
Soft Tissue using GPU approach of the Mass-Spring Model. In
3IA ‘2010 International Conference on Computer Graphics and
Artificial Intelligence 2010.

[25].	Hubbard, P. M. Approximating Polyhedra with Spheres for Time-
Critical Collision Detection. In: ACM Transactions Graphics,
Volume 15, Issue 3, 1996, pp. 179–210.

[26].	Zhang X. and Kim, Y. J. Interactive Collision Detection for
Deformable Models using Streaming AABB’s. In: IEEE
Transactions on Visualization and Computer Graphics, Volume
13, Issue 2, 2007, pp. 318–329.

[27].	Gottschalk, S., Lin, M. C., Manocha, D. OBBTree: A Hierarchical
Structure for Rapid Interference Detection. In: SIGGRAPH
’96: Proceedings of the 23rd Annual Conference on Computer
Graphics and Interactive Techniques, ACM, New York, NY, USA,
1996, pp. 171–180.

